Precision Air Slide Table Series MXP ø6, ø8, ฮ10, ø12, ø16

Size ø8 introduced to the MXP series

Cylinder: Built-in Linear Guide

Work mounting tap

(1) Tapped on table top

 2 Tapped on table side

Highly flexible mounting direction
Mounting from 3 directions.
(1) Body tapped (2) Body through-hole (3) Tapped on body side

Note) Side mounting of MXP6 is not available.

Compact Air Slide Table

Travelling parallelism*: 0.004 mm Parallelism: 0.02 mm

* Refer to page 6 for details of the traveling parallelism.

Numerous auto switch variations available

Reed switch, solid state switch, and 2-colour indication solid state switch can be mounted.

With auto switches and stroke adjuster

With shock absorber

Twice the allowable kinetic energy of a rubber stopper

Stopping accuracy is stable, because the guide block and the collision part of the shock absorber is a one-piece construction.

MXPJ6

Compact: Height $17 \times$ Width 20

Compact shape is realised by the cylinder built into the linear guide block. Material of body and table is martensitic stainless steel.

Series MXP
Model Selection

Model Selection Steps

Operating Conditions

Enumerate the operating conditions considering the mounting position and workpiece configuration.

- Model to be used
- Mounting orientation
- Average speed Va (mm/s)
- Load weight W (kg): Fig. (1)
- Overhang Ln (mm): Fig. (2)

Cylinder: MXP10-10 Mounting: Horizontal wall mounting
Average speed:
$\mathrm{Va}=300[\mathrm{~mm} / \mathrm{s}]$ Allowable load: $\mathrm{W}=0.2[\mathrm{~kg}]$
$\mathrm{L}_{2}=20 \mathrm{~mm}$
$\mathrm{L}_{3}=30 \mathrm{~mm}$

Kinetic Energy

Find the kinetic energy $E(J)$ of the load.

Confirm that the kinetic energy of the load does not exceed the allowable kinetic energy.

$$
\begin{aligned}
& \mathrm{E}=\frac{1}{2} \cdot \mathrm{~W}\left(\frac{\mathrm{~V}}{1000}\right)^{2} \\
& \text { Collision speed } \mathrm{V}=\underline{1.4}_{*}^{1 . \mathrm{Va}} \quad \text { * Correction factor }
\end{aligned}
$$

Kinetic energy (E) < Allowable kinetic energy (Emax)
Allowable kinetic energy Emax: Table (1)

$$
\begin{gathered}
E=\frac{1}{2} \cdot 0.2\left(\frac{420}{1000}\right)^{2}=0.018 \\
V=1.4 \times 300=420
\end{gathered}
$$

Possible to use by $\mathrm{E}=0.018$ < $\mathrm{Emax}=0.045$

Load Factor

3-1 Load Factor of Load Weight

Find the allowable load weight $\mathrm{Wa}(\mathrm{kg})$.
Note) No need to consider this load factor in the case of using perpendicularly in a vertical position. (Define $\alpha_{1}=0$.)
Find the load factor of the load weight α_{1}.

3-2 Load Factor of Static Moment

Find the static moment $M(N \cdot m)$.

Find the allowable static moment $\mathrm{Ma}(\mathrm{N} \cdot \mathrm{m})$.

Find the load factor α_{2} of the static moment.
Find the allowable static moment
$\mathrm{Ma}(\mathrm{N} \cdot \mathrm{m})$.
Find the load factor α_{2} of the static
moment.
$M=W \times 9.8(L n+A n) / 1000$
Moment centre position distance
compensation amount An: Table (3)
$\mathrm{Ma}=\gamma \cdot \mathrm{Mmax}^{\max }$
Allowable moment coefficient γ : Graph (2)
Maximum allowable moment Mmax: Table (4)
$\alpha_{2}=M / M a$

$$
\begin{gathered}
W a=1 \times 1.2=1.2 \\
\beta=1 \\
W \max =1.2 \\
\alpha_{1}=0.2 / 1.2=0.17
\end{gathered}
$$

$\alpha_{1}=W / W a$
Wa $=\beta \cdot$ Wmax
Allowable load weight coefficient $\beta:$ Graph (1)
Max. allowable load weight Wmax: Table (2)

3-3 Load Factor of Dynamic Moment

$$
\mathrm{Me}=1 / 3 \cdot \mathrm{We} \times 9.8 \frac{(\mathrm{Ln}+\mathrm{An})}{1000}
$$

Load equivalent to collision $\mathrm{We}=\delta \cdot \mathrm{W} \cdot \mathrm{V}$ δ : Damper coefficient
Rubber stopper $=4 / 100$
Shock absorber $=1 / 100$
Metal stopper $=16 / 100$
Corrected value for moment centre position
distance An: Table (3)

Mea $=\gamma \cdot$ Mmax $^{\text {max }}$

Allowable moment coefficient γ : Graph (2)
Max. allowable moment Mmax: Table (4)

$$
\alpha_{3}=\mathrm{Me} / \mathrm{Mea}
$$

Examine Mr.
[As Mp and My does not arise, examination is not needed.]

$$
\mathrm{Mr}=0.2 \times 9.8(20+6.8) / 1000=0.053
$$

$$
\mathrm{A}_{2}=6.8
$$

$$
\mathrm{Mar}=1 \times 4.2=4.2
$$

$\gamma=1$
$\operatorname{Mrmax}=4.2$
$\alpha_{2}=0.053 / 4.2=0.013$

Find the dynamic moment Me (N.m).

Find the allowable dynamic moment Mea ($\mathrm{N} \cdot \mathrm{m}$).

Find the load factor α_{3} of the dynamic moment.

3-4 Sum of the Load Factors

Use is possible if the sum of the load factors does not exceed 1.

$$
\alpha_{1}+\alpha_{2}+\alpha_{3}<1
$$

Examine Mep.

Mep $=1 / 3 \times 3.36 \times 9.8 \times \frac{(20+6.8)}{1000}=0.29$

$$
\mathrm{We}=4 / 100 \times 0.2 \times 420=3.36
$$

$$
\mathrm{A} 2=6.8
$$

Meap $=0.7 \times 1.7=1.19$
$\gamma=0.7$
Mp max $=1.7$
$\alpha_{3}=0.29 / 1.19=0.24$
Examine Mey.
Mey $=1 / 3 \times 3.36 \times 9.8 \times \frac{(30+10.5)}{1000}=0.44$

$$
\mathrm{We}=33.6
$$

$\mathrm{A}_{1}=10.5$
Meay $=1.19$ (Same as Meap)
$\alpha^{\prime} 3=0.44 / 1.19=0.37$

[^0]Fig. (1) Load Weight:W (kg)

Note) No need to consider this load factor in the case of using perpendicularly in a vertical position.

Fig. (2) Overhang: Ln (mm), Correction Values for Moment Centre Distance: An (mm)

	Pitch moment	Yaw moment	Roll moment
			-

Note) Static moment: Moment by gravity Dynamic moment: Moment by stopper collision

Table (1) Allowable Kinetic Energy: Emax (J)

Model	Allowable kinetic energy		
	Rubber stopper	Shock absorber	Metal stopper
MXPJ6	0.010	-	-
MXP 6	0.010	-	0.005
MXP 8	0.033	-	0.017
MXP10	0.045	0.090	0.023
MXP12	0.076	0.152	0.038
MXP16	0.135	0.270	0.068

Table (3) Moment Centre Position Distance Compensation Amount: An (mm)

Model	Stroke	Moment centre position distance compensation amount (Refer to Fig. (2).)		
		A1	A2	A3
MXPJ6 MXP 6	5	18.5	5.3	9
	10	23.5		
MXP 8	10	10.5	7.4	11
	20	20.5		
MXP10	10	10.5	6.8	13.5
	20	19.5		
MXP12	15	14.5	8	16
	25	24.5		
MXP16	20	20	12.5	23
	30	28		

Table (4) Maximum Allowable Moment: Mmax (N•m)

Model	Pitch/Yaw moment: Mpmax/Mymax						Roll moment: Mrmax					
	Stroke (mm)						Stroke (mm)					
	5	10	15	20	25	30	5	10	15	20	25	30
MXPJ6	1.4	2.3	-	-	-	-	2.6	3.5	-	-	-	-
MXP 6												
MXP 8	-	1.4	-	5.7	-	-	-	2.6	-	5.6	-	-
MXP10	-	1.7	-	6.3	-	-	-	4.2	-	8.5	-	-
MXP12	-	-	4.5	-	13	-	-	-	9.8	-	17	-
MXP16	-	-	-	12	-	28	-	-	-	26	-	41

Table (2) Max. Allowable Load Weight: Wmax (kg)

Model	Maximum allowable load
MXPJ6	0.32
MXP 6	
MXP 8	0.75
MXP10	1.2
MXP12	1.7
MXP16	3

Graph (1) Allowable Load Weight Coefficient: β

Graph (2) Allowable Moment Coefficient: γ

Note) Use the average speed when calculating static moment.
Use the collision speed when calculating dynamic moment.

Symbol

Symbol	Definition	Unit	Symbol	Definition	Unit
An ($\mathrm{n}=1$ to 3)	Correction values of moment centre position distance	mm	V	Collision speed	mm/s
E	Kinetic energy	J	Va	Average speed	mm/s
Emax	Allowable kinetic energy	J	W	Load weight	kg
Ln ($\mathrm{n}=1$ to 3)	Overhang	mm	Wa	Allowable load weight	kg
M (Mp, My, Mr)	Static moment (pitch, yaw, roll)	$\mathrm{N} \cdot \mathrm{m}$	We	Weight equivalent to impact	kg
Ma (Map, May, Mar)	Allowable static moment (pitch, yaw, roll)	$\mathrm{N} \cdot \mathrm{m}$	Wmax	Max. allowable load weight	kg
Me (Mep, Mey)	Dynamic moment (pitch, yaw)	$\mathrm{N} \cdot \mathrm{m}$	α	Load factor	-
Mea (Meap, Meay)	Allowable dynamic moment (pitch, yaw)	$\mathrm{N} \cdot \mathrm{m}$	β	Allowable load weight coefficient	-
Mmax (Mpmax, Mymax, Mrmax)	Maximum allowable moment (pitch, yaw, roll)	$\mathrm{N} \cdot \mathrm{m}$	γ	Allowable moment coefficient	-

Precision Air Slide Table Series MXP $\varnothing 6, \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 16$

How to Order

\section*{Precision
 Air Slide Table
 Bore size/Standard stroke (mm)
 | $\mathbf{6}$ | 5,10 |
| ---: | ---: |
| $\mathbf{8}$ | 10,20 |
| $\mathbf{1 0}$ | 10,20 |
| $\mathbf{1 2}$ | 15,25 |
| $\mathbf{1 6}$ | 20,30 |
 | | Adjuster option |
| :---: | :---: |
| Symbol | Adjuster option |
| - | Rubber stopper |
| B | Shock absorber |
| C | Metal stopper |}

○
Note 1) Adjuster for Series MXP6 is available for one side only. Note 2) Shock absorber is not available in Series MXP6 and MXP8. Note 3) Stroke adjusting screw of metal stopper uses stainless steel 304. For heat treated specifications, refer to "Made to Order Specifications".

* In the case of MXP6-5, with 2 auto switches are available for D-M9 \square type and D-M9 \square V type only. For other switches, no other choice is affordable but with 1 piece attached (symbol: S).

Auto switch

- \quad Without auto switch
*For the applicable auto switch model, refer to the table below.
Magnet/Switch rail

-	With magnet and rail
\mathbf{N}	Without magnet and rail

Applicable Auto Switch/Refer to page 21 for further information on auto switches.

Type	Special function	Electrical entry	$\begin{array}{\|l\|} \hline \text { 등 } \\ \text { 弟 } \\ \text { 흐 } \\ \text { 흠 } \\ \hline \end{array}$	Wiring (Output)	Load voltage			Auto switch model		Lead wire length * (m)			Pre-wired connector	Applicable load	
					DC		AC	Perpendicular	In-line	$\begin{gathered} 0.5 \\ (\mathrm{Nil}) \end{gathered}$	$\begin{gathered} 3 \\ \text { (L) } \end{gathered}$	$\begin{array}{r} 5 \\ (\mathrm{Z}) \\ \hline \end{array}$			
	-	Grommet	$\stackrel{\mathscr{\infty}}{\underset{\sim}{\infty}}$	3 -wire (NPN equivalent)	-	5 V	-	A96V	A96	\bullet	\bigcirc	-	-	IC circuit	-
				2-wire	24 V	12 V	100 V	A93V	A93	\bigcirc	\bigcirc	-	-	-	Relay, PLC
	-	Grommet	$\stackrel{\infty}{\infty}$	3-wire (NPN)	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$	-	M9NV	M9N	\bullet	-	\bigcirc	\bigcirc	IC circuit	Relay, PLC
				3-wire (PNP)				M9PV	M9P	-	-	\bigcirc	\bigcirc		
				2-wire		12 V		M9BV	M9B	\bullet	\bigcirc	\bigcirc	\bigcirc	-	
	Diagnostic indication (2-colour indication)			3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		M9NWV	M9NW	-	-	\bigcirc	\bigcirc	$\begin{array}{\|c\|} \hline \text { IC } \\ \text { circuit } \end{array}$	
				3-wire (PNP)				M9PWV	M9PW	\bullet	-	\bigcirc	\bigcirc		
				2-wire		12 V		M9BWV	M9BW	\bigcirc	-	\bigcirc	\bigcirc	-	

* Lead wire length symbols: $0.5 \mathrm{~m} \cdots \cdots \mathrm{Nil}$ (Example) M9N
* Solid state switches marked with "○" are produced upon receipt of order.
$3 \mathrm{~m} \cdots \ldots \mathrm{L}$ (Example) M9NL
$5 \mathrm{~m} \cdots \cdots \cdots \cdot \mathrm{Z}$ (Example) M9NZ
- Since there are other applicable auto switches than listed, refer to page 18 for details.
- For details about auto switches with pre-wired connector, refer to Best Pneumatics.

MXPJ6 Precision Air Slide Table 06

How to Order arisiver meme MXPJ6-10

Standard stroke

$\mathbf{5}$	5 mm
$\mathbf{1 0}$	10 mm

* MPXJ6 with auto switch is not available.

Specifications

Bore size (mm)	6
Piping port size	M 3
Fluid	Air
Action	Double acting
Operating pressure	0.15 to 0.7 MPa
Proof pressure	1.05 MPa
Ambient and fluid temperature	-10 to $60^{\circ} \mathrm{C}$
Piston speed	50 to $500 \mathrm{~mm} / \mathrm{s}$
Cushion	Rubber bumper
Lubrication	Non-lube 1 0 mm
Stroke length tolerance	

Theoretical Output

MXP10

MXP12

MXP16

* Exclusive body is to be used for the one with shock absorber.
Changing specifications, such as replacing component parts and retrofitting shock absorber is not possible.

Made to Order Specifications
(For details, refer to page 24, 25.)

Symbol	Specifications
-X16	Heat treated metal stopper bolt specification
-X23	Axial piping port set screw specification
-X42	Anti-rust guide specification
-X51	Long adjustment nut specification

For clean room specifications, refer to "Pneumatic Clean Series" catalogue.

Specifications

Model		MXP6	MXP8	MXP10	MXP12	MXP16
Bore size (mm)		6	8	10	12	16
Piping port size		M3 M5				
Fluid		Air				
Action		Double acting				
Operating pressure		0.15 to 0.7 MPa				
Proof pressure		1.05 MPa				
Ambient and fluid temperature		-10 to $60^{\circ} \mathrm{C}$				
Piston speed		50 to $500 \mathrm{~mm} / \mathrm{s}$(Adjuster option/Metal stopper: 50 to $200 \mathrm{~mm} / \mathrm{s}$)				
Cushion		Rubber bumperShock absorber (Option is not available for Series MXP6 and MXP8) None (Adjuster option/Metal stopper)				
Lubrication		Non-lube				
Stroke adjuster		Standard equipment (Adjustable on one side only, for the MXP6)				
Stroke adjustment range	Rubber stopper	0 to 5 mm on one side only	Each 0 to 3 mm on both ends			
	Shock absorber	-	Each 0 to 5 mm on both ends			
	Metal stopper	0 to 6 mm on one side onl	Each 0 to 5 mm on both ends		Each 0 to 4 mm on both ends	
Auto switch		Reed switch (2-wire, 3-wire)Solid state switch (2-wire, 3-wire)2-colour indication solid state switch (2-wire, 3-wire)				
Stroke length tolerance		${ }_{0}^{+1} \mathrm{~mm}$				

Theoretical Output

(N)

Bore size (mm)	Piston area $\left(\mathrm{mm}^{2}\right)$	Operating pressure (MPa)					
		0.3	0.4	0.5	0.6	0.7	
$\mathbf{6}$		6	8	11	14	17	20
$\mathbf{8}$		10	15	20	25	30	35
$\mathbf{1 0}$		16	24	32	40	47	55
12		23	34	45	57	68	79
16		40	60	80	101	121	141

Standard Stroke $(\mathrm{mm}) \quad$ Weight

Model	Standard stroke
MXP6	5,10
MXP8	10,20
MXP10	10,20
MXP12	15,25
MXP16	20,30

Model	Body weight	Additional weight of magnet and rail
MXP6-5	80	10
MXP6-10	105	10
MXP8-10	100	8
MXP8-20	160	12
MXP10-10	130	13
MXP10-20	210	20
MXP12-15	210	17
MXP12-25	320	23
MXP16-20	640	20
MXP16-30	830	23

Shock Absorber Specifications

Minimum Stroke for Auto Switch Mounting

No. of auto switches mounted	Applicable auto switch model		
	D-A9 $\square, \mathbf{D - A 9} \square \mathbf{V}$	D-M9 \square, D-M9 $\square \mathbf{V}$	D-M9 $\square \mathbf{W , ~ D - M 9 ~} \square \mathbf{W V}$
1 pc.	5	5	5
2 pcs.	10	5	10

Series MXP

Table Deflection

Table displacement due to pitch moment load
Displacement on A when load is
applied on F

Table displacement due to

 yaw moment loadDisplacement on A when load is applied on F.

$\varnothing 8$
$L=100 \mathrm{~mm}$

Table displacement due to roll moment load
Displacement on A when load is applied on F.

$\varnothing 8$
$\mathrm{L}=100 \mathrm{~mm}$

$\varnothing 10 \quad L=100 \mathrm{~mm}$

$\varnothing 12$
$\mathrm{L}=100 \mathrm{~mm}$

$\varnothing 16$
$\mathrm{L}=120 \mathrm{~mm}$

Table Accuracy

With shock absorber (mm)

Model		MXPJ6	MXP6	MXP8	MXP10	MXP12
MXP16						
	Surface C to surface A		0.02			
	Surface D to surface B		0.02			
Traveling parallelism	Surface C to surface A		0.004			
	Surface D to surface B		0.004			
M dimension tolerance			± 0.05			
W dimension tolerance			± 0.05			

Option Specifications

Rail assembly for mounting auto switch

When auto switch is mounted on air slide table without rail (MXP $\square-\square N$), this assembly is used.

Dimensions

MXP10, 12, 16

MXP8

MXP6

Applicable size	Switch rail part no.	Note
MXP6-5	MXP-AD6-5	With magnet and mounting screw
MXP6-10		
MXP8-10	MXP-AD8-10	
MXP8-20	MXP-AD8-20	
MXP10-10	MXP-AD10-10	
MXP10-20	MXP-AD10-20	
MXP12-15	MXP-AD12-15	
MXP12-25	MXP-AD12-25	
MXP16-20	MXP-AD10-20	
MXP16-30	MXP-AD12-25	

Note) MXP16-20 and MXP10-20 are common.
MXP16-30 and MXP12-25 are common

Series MXP

Construction

MXP6

Component Parts

No.	Description	Material	Note
1	Body	Stainless steel	Heat treated
2	Table	Stainless steel	Heat treated
3	Cover	Resin	
4	End plate	Aluminum alloy	Hard anodized
5	Return guide	Resin	
6	Scraper	Stainless steel, NBR	
7	Piston	Brass	Electroless nickel plated
8	Joint shaft	Carbon steel	Electroless nickel plated
9	End cap	Brass	Electroless nickel plated
10	Rod bumper	Polyurethane	
11	Steel ball	High carbon chrome bearing steel	
12	Plug	Brass, Stainless steel, NBR	Electroless nickel plated

Replacement Parts: Seal Kit

Bore size (mm)	Kit no.	Contents
$\mathbf{6}$	MXP6-PS	2 pieces each of no. (13) and (15) and 1 piece of no. (14)

MXPJ6

Component Parts

No.	Description	Material	Note
1	Body	Stainless steel	Heat treated
2	Table	Stainless steel	Heat treated
3	Cover	Resin	
4	Return guide	Resin	
5	Scraper	Stainless steel, NBR	
6	Piston	Brass	Electroless nickel plated
7	Joint shaft	Carbon steel	Electroless nickel plated
8	End cap	Brass	Electroless nickel plated
9	Rod bumper	Polyurethane	
10	Steel ball	High carbon chrome bearing steel	
11	Plug	Brass, Stainless steel, NBR	Electroless nickel plated
12	O-ring	NBR	
13	Piston seal	NBR	

Replacement Parts: Seal Kit

Bore size (mm)	Kit no.	Contents
6	MXPJ6-PS	2 pieces of no. (12) and (13)

MXP8,10,12,16

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Stainless steel	Heat treated
$\mathbf{2}$	Guide block	Stainless steel	Heat treated
$\mathbf{3}$	End plate	Aluminum alloy	Hard anodized
$\mathbf{4}$	Cover	Resin	
$\mathbf{5}$	Return guide	Resin	
$\mathbf{6}$	Scraper	Stainless steel, NBR	
$\mathbf{7}$	Tube	Brass	Electroless nickel plated (except $\varnothing 8$)
$\mathbf{8}$	Piston	Resin	
$\mathbf{9}$	Joint shaft	Carbon steel	Electroless nickel plated
$\mathbf{1 0}$	Adjust bumper	Polyurethane	

Replacement Parts: Seal Kit

Bore size (mm)	Kit no.	Contents
$\mathbf{8}$	MXP8-PS	
$\mathbf{1 0}$	MXP10-PS	
$\mathbf{1 2}$	MXP12-PS	
$\mathbf{1 6}$	MXP16-PS	

Component Parts

No.	Description	Material	Note
$\mathbf{1 1}$	Steel ball	High carbon chrome bearing steel	
$\mathbf{1 2}$	Adjusting bolt	Carbon steel (Rubber stopper)	Nickel plated
		Stainless steel (Metal stopper)	
$\mathbf{1 3}$	Adjust nut	Carbon steel	Nickel plated
$\mathbf{1 4}$	Plug	Brass, Stainless steel, NBR	Electroless nickel plated
$\mathbf{1 5}$	Switch rail	Aluminum alloy	Hard anodized
$\mathbf{1 6}$	Magnet	Rare earth	
$\mathbf{1 7}$	Magnet holder	Steel	Electroless nickel plated
$\mathbf{1 8}$	Piston seal	NBR	

Series MXP

Dimensions: MXPJ6

B D - Mounting datum level

								(mm)	
Model	E	F	H	J	M	Q	QL	S	Z
MXPJ6-5	23	25	38	27	37	28	8	5	44
MXPJ6-10	30	35	53	42	47	37	11	10	59

9

Dimensions: MXP6

MXP6-5

Model	E	F	H	J	M	Q	QL	S	W	Z	AA
MXP6-5	23	25	38	33.5	37	28	8	5	42	45	2
MXP6-10	30	35	42	48.5	47	37	11	10	53	60	9.5

Series MXP

Dimensions: MXP8

Section AA
B D - Mounting datum level

Model	G	H	J	K	L	M	Q	QL	S	V	W	Z
MXP8-10	8	32	52	20	20	21	32	14	10	44	40	60
MXP8-20	20	50	82	36	36	41	50	20	20	74	65	90

Dimensions: MxP 10

10	(mm)												
Model	G	\mathbf{H}	\mathbf{J}	\mathbf{K}	\mathbf{L}	\mathbf{M}	\mathbf{N}	\mathbf{Q}	$\mathbf{Q L}$	\mathbf{S}	\mathbf{V}	\mathbf{W}	\mathbf{Z}
MXP10-10	8	32	52.4	20	20	21	6.5	32	14	10	44	40	60
MXP10-20	20	50	82.4	36	36	39	7.5	50	20	20	74	65	90

Series MXP

Dimensions: MXP 10 with Shock Absorber

Model	\mathbf{H}	\mathbf{J}	\mathbf{K}	\mathbf{L}	\mathbf{M}	MA	\mathbf{N}	\mathbf{Q}	$\mathbf{Q L}$	\mathbf{S}	\mathbf{V}	\mathbf{W}	\mathbf{Z}
MXP10-10B	32	52.4	20	20	21	6	6.5	32	14	10	44	40	60
MXP10-20B	50	82.4	36	36	39	18	7.5	50	20	20	74	65	90

Dimensions: MXP 12

B D Mounting datum level

Model	G	H	J	K	L	M	Q	QL	S	V	W	Z
MXP12-15	10	40	68	22	24	29	40	18	15	59	55	76
MXP12-25	30	60	98	40	42	49	60	23	25	89	75	106

Series MXP

Dimensions: MXP 12 with Shock Absorber

Section AA

B D - Mounting datum level

\qquad
(mm)

Model	H	J	K	L	M	MA	Q	QL	S	V	W	Z
MXP12-15B	40	68	22	24	29	9	40	18	15	59	55	76
MXP12-25B	60	98	40	42	49	29	60	23	25	89	75	106

Series MXP

Dimensions: MxP 16 with Shock Absorber

Proper Auto Switch Mounting Position (Detection at stroke end)

MXP8,10,12,16

- Electrical entry from outside

- Electrical entry from inside

Reed Switch
D-A90(V), D-A93(V), D-A96(V)

Model	Stroke (mm)					
	10	15	20	25	30	
MXP8	A	35	-	45	-	-
	B	15	-	25	-	-
MXP10	A	35	-	45	-	-
	B	15	-	25	-	-
MXP12	A	-	40.5	-	50.5	-
	B	-	20.5	-	30.5	-
MXP16	A	-	-	51	-	59
	B	-	-	31	-	39

Solid State Switch
D-M9B(V), D-M9N(V), D-M9P(V) (mm)

Model	Stroke (mm)					
	10	15	20	25	30	
MXP8	A	31	-	41	-	-
	B	19	-	29	-	-
MXP10	A	31	-	41	-	-
	B	19	-	29	-	-
MXP12	A	-	36.5	-	46.5	-
	B	-	24.5	-	34.5	-
MXP16	A	-	-	47	-	55
	B	-	-	35	-	43

2-colour Indication, Solid State Switch D-M9BW(V), D-M9NW(V), D-M9PW(V)(mm)

Model	Stroke (mm)					
	10	15	20	25	30	
MXP8	A	31	-	41	-	-
	B	19	-	29	-	-
MXP10	A	31	-	41	-	-
	B	19	-	29	-	-
MXP12	A	-	36.5	-	46.5	-
	B	-	24.5	-	34.5	-
MXP16	A	-	-	47	-	55
	B	-	-	35	-	43

MXP6

2-colour Indication,
Solid State Switch
D-M9BW(V), D-M9NW(V), D-M9PW(V)

Model	Stroke (mm)		
	5	10	
MXP6	A	25.5	30.5
	B	26.5	31.5
	C	13.5	18.5
	D	14.5	19.5

Solid State Switch
D-M9B(V), D-M9N(V), D-M9P(V)

Model	Stroke (mm)		
		5	10
MXP6	A	25.5	30.5
	B	26.5	31.5
	C	13.5	18.5
	D	14.5	19.5

Mounting of Auto Switch

\triangle Caution

Auto Switch Mounting Tool

- Use the watchmakers' screwdriver with a handle diameter 5 to 6 mm when tightening the set screw (attached to auto switch).

Tightening Torque

- Use a tightening torque of approximately 0.05 to $0.1 \mathrm{~N} \cdot \mathrm{~m}$. As a guide, it can be tightened about 90° past the position at which tightening can be felt.

I Other than the models listed in "How to Order", the I I following auto switches are applicable.
I For detailed specifications, refer to Best Pneumatics.

Type	Model	Electrical entry (Fetching direction)	Features
Reed switch	D-A90	Grommet (In-line)	Without indicator light
	D-A90V	Grommet (Perpendicular)	

* Normally closed ($\mathrm{NC}=\mathrm{b}$ contact), solid state switch (D-F9G/F9H type) are also available. For details, refer to Best Pneumatics.

Auto switch model	Applicable bore size (mm)				
	6	8	10	12	16
D-A9 $\square /$ A9 \square V	5	5	5	5	5
D-M9 $\square / \mathrm{M} 9 \square \mathrm{~V}$	2.5	2.5	2.5	2.5	2.5
$\square \& \square W / M 9 \square W V$	3	3	3	3	3

-

Operating Range

Series MXP

Auto Switch Specifications

Auto Switch Common Specifications

Type	Reed switch	Solid state switch
Leakage current	None	3-wire: $100 \mu \mathrm{~A}$ or less 2 -wire: 0.8 mA or less
Operating time	1.2 ms	1 ms or less
Impact resistance	$300 \mathrm{~m} / \mathrm{s}^{2}$	$1000 \mathrm{~m} / \mathrm{s}^{2}$
Insulation resistance	$50 \mathrm{M} \Omega$ or more at $500 \mathrm{VDC} \mathrm{Mega} \mathrm{(between} \mathrm{lead} \mathrm{wire} \mathrm{and} \mathrm{case)}$	
Withstand voltage	1000 VAC for 1 minute (between lead wire and case)	
Ambient temperature	-10 to $60^{\circ} \mathrm{C}$	
Enclosure	IEC529 standard IP67, JIS C 0920 watertight construction	

Lead Wire Length

Lead wire length indication
(Example) D-M9PL
Lead wire length

$\mathbf{N i l}$	0.5 m	
\mathbf{L}	3	m
\mathbf{Z}	5	m

Note 1) Applicable auto switch with 5 m lead wire "Z"
Reed switch: None
Solid state switch: Manufactured upon receipt of order as standard.
Note 2) To designate solid state switches with flexible specifications, add "-61" after the lead wire length.

* Oilproof flexible heavy-duty cord is used for D-M9 \square as standard. There is no need to suffix -61 to the end of part number.
(Example) D-M9PWVL-61
Flexible specification

Auto Switch Hysteresis

The hysteresis is the difference between the position of the auto switch as it turns "on" and as it turns "off". A part of operating range (one side) includes this hysteresis.

Contact Protection Box: CD-P11, CD-P12

<Applicable switch model>

D-A9•A9■V

The auto switches above do not have a built-in contact protection circuit. Therefore, please use a contact protection box with the switch for any of the following cases:
(1) Where the operation load is an inductive load.
(2) Where the wiring length to load is greater than 5 m .
(3) Where the load voltage is 100 VAC.

The contact life may be shortened. (Due to permanent energising conditions.)

Specifications

Part No.	CD-P11		CD-P12
Load voltage	100 VAC	200 VAC	24 VDC
Maximum load current	25 mA	12.5 mA	50 mA

* Lead wire length — Switch conneciton side 0.5 m

Load connection side 0.5 m

Internal Circuit

Dimension

Connection

To connect a switch unit to a contact protection box, connect the lead wire from the side of the contact protection box marked SWITCH to the lead wire coming out of the switch unit. Keep the switch as close as possible to the contact protection box, with a lead wire length of no more than 1 metre.

Series MXP

Auto Switch Connections and Examples

Basic Wiring

Solid state 3-wire, NPN

Power supplies for switch and load are separate.)

2-wire

(Reed switch)
(Solid state switch)

Example of Connection to PLC (Programmable Logic Controller)

Connection Example for AND (Serial) and OR (Parallel)

- 3-wire

AND connection for NPN output (using relays)

2-wire with 2-switch AND connection

When two switches are connected in series, a load may malfunction because the load voltage will decline when in the ON state. The indicator lights will light up if both of the switches are in the ON state.

Load voltage at $\mathrm{ON}=\underset{\text { Power supply }}{\text { voltage }}-\begin{gathered}\text { Internal } \\ \text { voltage drop }\end{gathered} \times 2$ pcs.
$=24 \mathrm{~V}-4 \mathrm{~V} \times 2$ pcs.
$=16 \mathrm{~V}$
Example: Power supply is 24 VDC. Internal voltage drop in switch is 4 V .

AND connection for NPN output (performed with switches only)

The indicator lights will light up when both switches are turned ON.

2-wire with 2-switch OR connection

Example: Load impedance is $3 \mathrm{k} \Omega$.
Leakage current from switch is 1 mA .

Connect according to the applicable PLC input specifications, as the connection method will vary depending on the PLC input specifications.

Reed Switch: Direct Mounting Style D-A90(V)/D-A93(V)/D-A96(V) C E

Auto Switch Specifications

For details about certified products conforming to international standards, visit us at www.smcworld.com.

Grommet

 Electrical entry : In-line

©Caution

Operating Precautions
Fix the switch with the existing screw installed on the switch body. The switch may be damaged if a screw other than the one supplied, is used.

Auto Switch Internal Circuit

D-A93(V)

D-A96(V)

Note) (1) In a case where the operation load is an inductive load.
(2) In a case where the wiring load is greater than 5 m .
(3) In a case where the load voltage is 100 VAC.

Please use the auto switch with a contact protection box any of the above mentioned cases. (For details about the contact protection box, refer to page 19.)

PLC: Abbreviation for Programmable Logic Controller			
D-A90/D-A90V (without indicator light)			
Auto switch part no.	D-A90/D-A90V		
Applicable load	IC circuit, Relay, PLC		
Load voltage	$24 \mathrm{~V} \mathrm{AC/DC} \mathrm{or} \mathrm{less}$	48 V AC/DC or less	100 V AC/DC or less
Maximum load current	50 mA	40 mA	20 mA
Contact protection circuit	None		
Internal resistance	1Ω or less (including lead wire length of 3 m)		
D-A93/D-A93V/D-A96/D-A96V (with indicator light)			
Auto switch part no.	D-A93/D-A93V		D-A96/D-A96V
Applicable load	Relay, PLC		IC circuit
Load voltage	24 VDC	100 VAC	4 to 8 VDC
Load current range and max. load current	5 to 40 mA	5 to 20 mA	20 mA
Contact protection circuit	None		
Internal voltage drop	D-A93 - 2.4 V or less (to 20 mA) 3 V or less (to 40 mA) D-A93V - 2.7 V or less		0.8 V or less
Indicator light	Red LED lights when ON		

- Lead wires

D-A90(V)/D-A93(V) - Oilproof vinyl heavy-duty cord: ø2.7, $0.18 \mathrm{~mm}^{2} \times 2$ cores (Brown, Blue), 0.5 m D-A96(V) - Oilproof vinyl heavy-duty cord: ø2.7, $0.15 \mathrm{~mm}^{2} \times 3$ cores (Brown, Black, Blue), 0.5 m Note 1) Refer to page 19 for reed switch common specifications and lead wire length. Note 2) Refer to page 19 for lead wire lengths.

Weight
Unit: g

Auto switch model	D-A90	D-A90V	D-A93	D-A93V	D-A96	D-A96V
Lead wire length: 0.5 m	6	6	6	6	8	8
Lead wire length: 3 m	30	30	30	30	41	41

Dimensions
Unit: mm
D-A90/D-A93/D-A96

D-A90V/D-A93V/D-A96V

Solid State Switch: Direct Mounting Style D-M9N(V)/D-M9P(V)/D-M9B(V) C E

Grommet

- 2-wire load current is reduced (2.5 to 40 mA)

- Lead-free

- UL certified (style 2844) lead cable is used.

©Caution

Operating Precautions
Fix the switch with the existing screw installed on the switch body. The switch may be damaged if a screw other than the one supplied, is used.

Auto Switch Internal Circuit

Auto Switch Specifications

\downarrow
For details about certified products conforming to international standards, visit us at www.smcworld.com.

PLC: Abbreviation of Programmable Logic Controller

D-M9 \square, D-M9 \square V (With indicator light)						
Auto switch part no.	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10 to 28 VDC)	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED lights when ON.					

- Lead wires

Oilproof vinyl heavy-duty cord: ø2.7 x 3.2 ellipse, $0.15 \mathrm{~mm}^{2}$,
D-M9B(V) $\quad 0.15 \mathrm{~mm}^{2} \times 2$ cores
D-M9N(V), D-M9P(V) $\quad 0.15 \mathrm{~mm}^{2} \times 3$ cores
Note 1) Refer to page 19 for solid state switch common specifications.
Note 2) Refer to page 19 for lead wire lengths.
Weight
Unit: g

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Lead wire length (m)	0.5	8	8	7
	3	41	41	38
	5	68	68	63

Dimensions
Unit: mm

D-M9 \square

D-M9 $\square V$

2-colour Indication, Solid State Switch: Direct Mounting Style D-F9NW(V)/D-F9PW(V)/D-F9BW(V)
 (

Auto Switch Specifications

For details about certified products conforming to international standards, visit us at www.smcworld.com.

Grommet

©Caution

Operating Precautions

Fix the switch with the existing screw installed on the switch body. The switch may be damaged if a screw other than the one supplied, is used.
Auto Switch Internal Circuit D-F9NW(V)

D-F9PW(V)

D-F9BW(V)

Indicator light/Display method

PLC: Abbreviation for Programmable Logic Controller

D-F9 \square W/D-F9 \square WV (with indicator light)						
Auto switch part no.	D-F9NW	D-F9NWV	D-F9PW	D-F9PWV	D-F9BW	D-F9BWV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 VDC)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10 to 28 VDC)	
Load current	40 mA or less		80 mA or less		5 to 40 mA	
Internal voltage drop	1.5 V or less (0.8 V or less at 10 mA load current)		0.8 V or less		4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating position Red LED lights up Optimum operating position Green LED lights up					

- Lead wires

Oilproof vinyl heavy-duty cord: ø2.7, $0.15 \mathrm{~mm}^{2} \times 3$ cores (Brown, Black Blue),
$0.18 \mathrm{~mm}^{2} \times 2$ cores (Brown, Blue), 0.5 m
Note 1) Refer to page 19 for reed switch common specifications.
Note 2) Refer to page 19 for lead wire lengths.

Weight
Unit: g

Auto switch model		D-F9NW(V)	D-F9PW(V)	D-F9BW(V)
Lead wire length (m)	0.5	7	7	7
	3	34	34	32
	5	56	56	52

Dimensions
Unit: mm

Series MXP

Made to Order Specifications

Made-to-Order Application Chart

Made-to-order contents		MXPJ6	MXP6	MXP8	MXP10	MXP12	MXP16	Note
(1) Anti-rust guide	X42	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
(2) Heat treated metal stopper bolt	X16		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Metal stopper only
(3) Axial piping port set screw	X23	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
(4) Long adjustment nut	X51			\bigcirc	\bigcirc	\bigcirc	\bigcirc	Except with shock absorber

Martensitic stainless steel is used for the body, table and guide block, but if greater rust prevention is required use this specification.
The body, table and guide block undergo an anti-rust treatment.

Specifications

Model	Anti-rust type
Bore size (mm)	$6,8,10,12,16$
Fluid	Air
Surface treatment	Special anti-rust treatment ${ }^{\text {Note 2) }}$

Note 1) Dimensions are the same as the standard type.
Note 2) The body, table and guide block are block due to the special anti-rust treatment

2 Heat Treated Metal Stopper Bolt Specification
 -X16

Symbol

MXP Standard part no. \rightarrow Indicate model on page $3-$ X16
Metal stopper specification

To reduce wear on the metal stopper, heat treated chrome molybdenum steel (SCM435) is used for the stroke adjustment screw.

Specifications

Bore size (mm)	$\mathbf{6}$	$\mathbf{8 , 1 0 , 1 2}$	$\mathbf{1 6}$
Fluid	Air		
Speed range	50 to $200 \mathrm{~mm} / \mathrm{S}$		
Cushion	None		
Stroke adjustment	One side only 0 to 5 mm	One side only 0 to 5 mm	One side only 0 to 4 mm

1 Construction/Dimensions (Dimensions are the same as standard. Refer to pages 10 to 17.)

Series MXP

		Symbol
3 Ax	Axial Piping Port Set Screw Specification	-X23
MXP Standard part no. \rightarrow Indicate model on page 3 - X23		
MXPJ6 Standard part no. \rightarrow Indicate model on page 3-X23		
	•Axial pi set screw specific	iping port cation

The axial piping port plug ($\mathrm{M}-3 \mathrm{P}, \mathrm{M}-5 \mathrm{P}$) is changed to a hexagon socket head set screw, and the overall length is shortened.
Note: The hexagon socket head screw is secured with an anaerobic adhesive and cannot be removed.

Dimensions

MXPJ6

MXP6

MXP8,10,12,16

-X23

Model	
(mm)	
MXP8-10-X23	6
MXP8-20-X23	90
MXP10-10-X23	60
MXP10-20-X23	90
MXP12-15-X23	76
MXP12-25-X23	106
MXP16-20-X23	102
MXP16-30-X23	128

4 Long Adjustment Nut Specification
Symbol

The overall length of the adjustment nut is increased to allow stroke adjustment work from any direction.

Dimensions

MXP8,10,12,16

(mm)					
Model	A	B	C	D	
MXP8- $\square-$ X51	20	10.5	8	4.5	
MXP10- \square-X51	20	10.5	8	4.5	
MXP12- $\square-$ X51	20	9	9	5	
MXP16- $\square-$ X51	25	12	10	6	

Series MXP

Safety Instructions

The following safety instructions are intended to prevent a hazardous situation and/or equipment damage. The instructions indicate the level of potential hazard by labels of "Caution", "Warning" or "Danger". To ensure safety, please observe all safety practices, including ISO $4414{ }^{\text {Note 1) }}$ and JIS B 8370 Note 2).


```
〔. Caution : Operator error could result in injury or equipment damage.
§ Warning : Operator error could result in serious injury or loss of life.

```

Note 1) ISO 4414: Pneumatic fluid power--General rules relating to systems.
Note 2) JIS B 8370: General Rules for Pneumatic Equipment

```

\section*{\(\triangle\) Warning}
1. The compatibility of pneumatic equipment is the responsibility of the person who designs the pneumatic system or decides its specifications.
Since the products specified here are used in various operating conditions, their compatibility with a specific pneumatic system must be based on specifications, post analysis and/or tests to meet a specific requirement. The expected performance and safety assurance is the responsibility of the person who determines the compatibility of the system. This person should continuously review the suitability of all specified items by referring to the latest information in the catalogue and by taking into consideration the possibility of equipment failure when configuring the system.
2. Only trained personnel should operate pneumatically operated machinery and equipment.
Compressed air can be dangerous if an operator is unfamiliar with it. Assembly, handling or repair of pneumatic systems should be performed by trained and experienced operators.
3. Do not service machinery/equipment or attempt to remove components until safety is confirmed.
1. Inspection and maintenance of machinery/equipment should only be performed once measures to prevent falling or runaway of the driver objects have been confirmed.
2. When equipment is to be removed, confirm the all safety precautions have been followed. Cut the supply pressure for this equipment and exhaust all residual compressed air in the system.
3. Before restarting any machinery/equipment, excercise caution to prevent quick extension of a cylinder piston rod, etc.
4. Contact SMC if the product is to be used in any of the following conditions:
1. Conditions and environments beyond the given specifications, or if product is used outdoors.
2. Installation on equipment in conjunction with atomic energy, railway, air navigation, vehicles, medical equipment, food and beverages, recreation equipment, emergency stop circuits, clutch and brake circuits in press applications, or safety equipment.
3. An application which has the possibility of having a negative effect on people, property, or animals, requiring special safety analysis.

\section*{Caution on Design}

\section*{© Warning}
1. There is a possibility of dangerous sudden action by air cylinders if sliding parts of machinery are twisted due to external forces, etc.
In such cases, human injury may occur; e.g., by catching hands or feet in the machinery, or damage to the machinery itself may occur. Therefore, the machine should be adjusted to operate smoothly and designed to avoid such dangers.
2. A protective cover is recommended to minimise the risk of personal injury.
If a stationary object and moving parts of a cylinder are in close proximity, personal injury may occur. Design the structure to avoid contact with the human body.
3. Securely tighten all stationary parts and connected parts so that they will not become loose.
Especially when a cylinder operates with high frequency or is installed where there is a lot of vibration, ensure that all parts remain secure.
4. A deceleration circuit or shock absorber may be required.
When a driven object is operated at high speed or the load is heavy, a cylinder's cushion will not be sufficient to absorb the impact. Install a deceleration circuit to reduce the speed before cushioning, or install an external shock absorber to relieve the impact. In this case, the rigidity of the machinery should also be examined.
5. Consider a possible drop in circuit pressure due to a power outage, etc.
When a cylinder is used in a clamping mechanism, there is a danger of workpieces dropping if there is a decrease in clamping force due to a drop in circuit pressure caused by a power outage, etc. Therefore, safety equipment should be installed to prevent damage to machinery and human injury. Suspension mechanisms and lifting devices also require consideration for drop prevention.
6. Consider a possible loss of power source.

Measures should be taken to protect against bodily injury and equipment damage in the event that there is a loss of power to equipment controlled by pneumatics, electricity, or hydraulics.
7. Design circuitry to prevent sudden lurching of driven objects.
When a cylinder is driven by an exhaust centre type directional control valve or when starting up after residual pressure is exhausted from the circuit, etc., the piston and its driven object will lurch at high speed if pressure is applied to one side of the cylinder because of the absence of air pressure inside the cylinder. Therefore, equipment should be selected and circuits designed to prevent sudden lurching, because there is a danger of human injury and/or damage to equipment when this occurs.
8. Consider emergency stops.

Design so that human injury and/or damage to machinery and euqipment will not be caused when machinery is stopped by a safety device under abnormal conditions, a power outage or a manual emergency stop.
9. Consider the action when operation is restarted after an emergency stop or abnormal stop.
Design the machinery so that human injury or equipment damage will not occur upon restart of operation.
When the cylinder has to be reset at the starting position, install manual safely equipment.

\section*{Selection}

\section*{\(\triangle\) Warning}

\section*{1. Confirm the specifications.}

The products featured in this catalogue are designed for use in industrial compressed air systems. If the products are used in conditions where pressure and/or temperature are outside the range of specifications, damage and/or malfunctions may occur. Do not use in these conditions. (Refer to the specifications.)
Consult with SMC if you use a fluid other than compressed air.

\section*{2. Intermediate stop}

In the case of 3 position closed centre of a valve, it is difficult to make a piston stop at the required position as acurately and precisely as with hydraulic pressure due to compressibility of air.
Furthermore, since valves and cylinders, etc. are not guaranteed for zero air leakage, it may not be possible to hold a stopped position for an extended period of time. Contact SMC in the case it is necessary to hold a stopped position for an extended period.

\section*{Caution}
1. Operate within the limits of the maximum usable stroke.
The piston rod will be damaged if operated beyond the maximum stroke. Refer to the air cylinder model selection procedure for the maximum usable stroke.
2. Operate the piston within a range such that collision damage will not occur at the stroke end.
3. Use a speed controller to adjust the cylinder drive speed, gradually increasing from a low speed to the desired speed setting.

\section*{Mounting}

\section*{\(\triangle\) Caution}
1. Be certain to match the rod shaft centre with the direction of the load and movement when connecting.
When not properly matched, problems may arise with the rod and tube, and damage may be caused due to friction on areas such as the inner tube surface, bushings, rod surface and seals.
2. When an external guide is used, connect the rod end and the load in such a way that there is no interference at any point within the stroke.
3. Do not scratch or gouge the sliding parts of the cylinder tube or tube rod, etc., by striking or grasping them with other objects.
Cylinder bores are manufactured to precise tolerances, so that even a slight deformation may cause malfunction. Also, scratches or gouges, etc., in the tube rod may lead to damaged seals and cause air leakage.

\section*{4. Prevent the seizure of rotating parts.}

Prevent the seizure of rotating parts (pins, etc.) by applying grease.

Series MXP Actuator Precautions 2
Be sure to read before handling.

\section*{Mounting}

\section*{Caution}
5. Do not use until you verify that the equipment can operate properly.
After mounting, repairs, or modification, etc., connect the air supply and electric power, and then confirm proper mounting by means of appropriate function and leak tests.

\section*{6. Instruction manual}

Install the products and operate them only after reading the instruction manual carefully and understanding its contents. Also keep the manual where it can be referred to as neces-

\section*{Piping}

\section*{Caution}

\section*{1. Preparation before pipig}

Before piping is connected, it should be thoroughly blown out with air (flushing) or washed to remove chips, cutting oil and other debris from inside the pipe.

\section*{2. Wrapping of pipe tape}

When screwing in pipes and fittings, etc., be certain that chips from the pipe threads and sealing material will not ingress inside the piping.
Also, when pipe tape is used, leave 1.5 to 2 thread ridges exposed at the end of the threads.


\section*{Lubrication}

\section*{© Caution}

\section*{1. Lubrication of non-lube type cylinder}

The cylinder has been lubricated at the factory and can be used without any further lubrication.
However, in the event that it is lubricated additionally, be sure to use Class 1 turbine oil (with no additive) ISO VG32.
Stopping lubrication later may lead to malfunctions because the new lubricant will cancel out the original lubricant. Therefore, lubrication must be continued once it has been started.

\section*{Air Supply}

\section*{\(\triangle\) Warning}

\section*{1. Use clean air.}

Do not use compressed air which contains chemicals, synthetic oils containing organic solvents, salts or corrosive gases, etc., as this can cause damage or malfunction.

\section*{Air Supply}

\section*{© Caution}

\section*{1. Install air filters.}

Install air filters close to valves at their upstream side. A filtration degree of \(5 \mu \mathrm{~m}\) or less should be selected.
2. Install an aftercooler, air dryer, or water separator (Drain Catch).
Air that includes excessive drainage may cause malfunction of valves and other pneumatic equipment. To prevent this, install an air dryer, aftercooler or water separator, etc.
3. Use the product within the specified range of fluid and ambient temperature.
Take measures to prevent freezing when below \(5^{\circ} \mathrm{C}\), since moisture in circuits can freeze and cause damage to seals and lead to malfunctions.
For compressed air quality, refer to "Air Preparation Equipment" catalogue.

\section*{Operating Environment}

\section*{Warning}
1. Do not use in atmospheres or locations where corrosion hazards exist.
2. In dusty locations or where water or oil, etc., splash on the equipment, take suitable measures to protect the rod.
3. When using auto switches, do not operate in an environment with strong magnetic fields.

\section*{Maintenance}

\section*{Warning}

\section*{1. Perform maintenance procedures as shown} in the instruction manual.
If it is handled improperly, malfunction or damage of machinery or equipment may occur.
2. Removal of equipment, and supply/exhaust of compressed air
Before any machinery or equipment is removed, first ensure that the appropriate measures are in place to prevent the fall or erratic movement of driven objects and equipment, then cut off the electric power and reduce the pressure in the system to zero. Only then should you proceed with the removal of any machinery and equipment.
When machinery is restarted, proceed with caution after confirming that appropriate measures are in place to prevent cylinders from sudden movement.

\section*{\(\triangle\) Caution}

\section*{1. Drain flushing}

Remove drainage from air filters regularly. (Refer to the specifications.)

Series MXP
Auto Switch Precautions 1
Be sure to read before handling.

\section*{Design and Selection}

\section*{\(\triangle\) Warning}

\section*{1. Confirm the specifications.}

Read the specifications carefully and use this product appropriately. The product may be damaged or malfunction if it is used outside of its specification range (eg. current load, voltage, temperature or impact, etc.).
2. Take precautions when multiple actuators are used close together.
When two or more actuators are lined up in close proximity to each other, magnetic field interference may cause the switches to malfunction. Maintain a minimum cylinder separation of 40 mm .
3. Pay attention to the length of time that a switch is on at an intermediate stroke position.
When an auto switch is placed at an intermediate position of the stroke and a load connected to the auto switch is driven at the time the slide table passes, the auto switch will operate. However if the speed is too great, the operating time will be shortened and the load may not operate properly. The maximum detectable piston speed is:
\[
\mathrm{V}(\mathrm{~mm} / \mathrm{s})=\frac{\text { Auto switch operating range }(\mathrm{mm})}{\text { Load operating time }(\mathrm{ms})} \times 1000
\]
4. Keep wiring as short as possible.
<Reed switch>
As the length of the wiring to a load gets longer, the rush current at the time the switch is turned ON becomes greater, which may shorten the product's life. (The switch will stay ON all the time.)
1) Use a contact protection box when the wire length is 5 m or longer.
<Solid state switch>
2) Although the wire length should not affect switch function, use a wire that is 100 m or shorter.
5. Take precautions for the internal voltage drop of the switch.
<Reed switch>
1) Switches with an indicator light (Except D-A96, A96V)
- If auto switches are connected in series as shown below, take note that there will be a large voltage drop because of internal resistance from the light emitting diodes. (Refer to internal voltage drop in the auto switch specifications.)
[The voltage drop will be " \(n\) " times larger when " \(n\) " auto switches are connected.]
Even though an auto switch operates normally, the load may not operate.

- Similarly, when operating below a specified voltage, it is possible that the load may be ineffective even though the auto switch function is normal. Therefore, the formula below should be satisfied after confirming the minimum operating voltage of the load.
\begin{tabular}{l} 
Supply \\
voltage
\end{tabular}\(-\)\begin{tabular}{l} 
Internal voltage \\
drop of switch
\end{tabular}\(>\)\begin{tabular}{l} 
Minimum operating \\
voltage of load
\end{tabular}
2) If the internal resistance of a light emitting diode causes a problem, select a switch without an indicator light (Model A90, A90V).
<Solid state switch>
3) Generally, the internal voltage drop will be greater with a 2wire solid state auto switch than with a reed switch. Take the same precautions as in item (1) as mentioned above.
Also, note that a 12 VDC relay is not applicable.

\section*{6. Pay attention to leakage current.}
<Solid state switch>
With a 2-wire solid state auto switch, current (leakage current) flows to the load to operate the internal circuit even when in the OFF state.
\[
\begin{aligned}
& \text { Current to operate load } \\
& \text { (Input OFF signal of controller) }
\end{aligned}>\begin{aligned}
& \text { Leakage } \\
& \text { current }
\end{aligned}
\]

If the condition given in the above formula is not met, internal circuit will not reset correctly (stays ON). Use a 3-wire switch if this specification cannot be satisfied.
Moreover, leakage current flow to the load will be " \(n\) " times larger when "n" auto switches are connected in parallel.
7. Do not use a load that generates surge voltage.
<Reed switch>
If driving a load such as a relay which generates a surge voltage, use a contact protection box.
<Solid state switch>
Although a zener diode for surge protection is connected at the output side of a solid state auto switch, damage may still occur if a surge is applied repeatedly. When directly driving a load which generates a surge, such as a relay or solenoid valve, use a switch with a built-in surge absorbing element.
8. Cautions for use in an interlock circuit

When an auto switch is used for an interlock signal requiring high reliability, device a double interlock system to safeguard against malfunctions. The double interlock system should provide a mechanical protection function or use another switch (sensor) together with the auto switch. Also perform periodic inspection and confirm proper operation.
9. Ensure sufficient clearance for maintenance activities.
When designing an application, be sure to allow sufficient clearance for maintenance and inspections.

\section*{Mounting and Adjustment}

\section*{\(\triangle\) Warning}

\section*{1. Do not drop or bump.}

Do not drop, bump or apply excessive impacts \(\left(300 \mathrm{~m} / \mathrm{s}^{2}\right.\) or greater for reed switches and \(1000 \mathrm{~m} / \mathrm{s}^{2}\) or greater for solid state switches) while handling.
Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction.
2. Do not carry an actuator by the auto switch lead wires.
Never carry a cylinder by its lead wires. This may not only cause broken lead wires, but it may cause internal elements of the switch to be damaged by the stress.
3. Mount switches using the proper tightening torque.
When a switch is tightened above the torque specification, the mounting screws, or switch may be damaged. On the other hand, tightening below the torque specification may allow the switch to slip out of position.

\section*{4. Mount a switch at the centre of the operating} range.
Adjust the mounting position of an auto switch so that the piston stops at the centre of the operating range (the range in which a switch is ON). (The mounting positions shown in the catalogue indicate the optimum position at the stroke end.) If mounted at the end of the operating range (around the borderline of ON and OFF), operation will be unstable.
<D-M9■>
When the D-M9 auto switch is used to replace old series auto switch, it may not activate depending on operating condition because of its shorter operating range.
Such as
- Application where the stop position of actuator may vary and exceed the operating range of the auto switch, for example, pushing, pressing, clamping operation, etc.
- Application where the auto switch is used for detecting an intermediate stop position of the actuator. (In this case the detecting time will be reduced. )
In these applications, please set the auto switch to the centre of the required detecting range.

\section*{\(\triangle\) Caution}
1.Fix the switch with the appropriate screw installed on the switch body. The switch may be damaged if other screws are used.

\section*{Wiring}

\section*{© Warning}
1. Avoid repeatedly bending or stretching lead wires.

Broken lead wires will result from repeatedly applying bending stress or stretching force to the lead wires.
2. Be sure to connect the load before power is applied.
<2-wire type>
If the power is turned ON when an auto switch is not connected to a load, the switch will be instantly damaged because of excess current.

\section*{Wiring}

\section*{3. Confirm proper insulation of wiring.}

Be certain that there is no faulty wiring insulation (such as contact with other circuits, ground fault, improper insulation between terminals, etc.). Damage may occur due to excess current flow into a switch.

\section*{4. Do not wire in conjunction with power lines or high voltage lines.}

Wire separately from power lines or high voltage lines, avoiding parallel wiring or wiring in the same conduit with these lines. Control circuits containing auto switches may malfunction due to noise from these lines.

\section*{5. Do not allow short circuit of loads.}
<Reed switch>
If the power is turned ON with a load in a short circuited condition, the switch will be instantly damaged because of excess current flow into the switch.

\section*{<Solid state switch>}

D-M9 \(\square\) and all models of PNP output type switches do not have built-in short circuit protection circuits. If loads are short circuited, the switches will be instantly damaged, as in the case of reed switches.
Take special care to avoid reverse wiring with the brown [red] power supply line and the black [white] output line on 3-wire type switches.

\section*{6. Avoid incorrect wiring.}
<Reed switch>
A 24 VDC switch with indicator light has polarity. The brown [red] lead wire is (+), and the blue [black] lead wire is \((-)\).
1) If connections are reversed, the switch will still operate, but the light emitting diode will not light up.
Also note that a current greater than the maximum specified one will damage a light emitting diode and make it inoperable. Applicable models: D-A93, A93V
<Solid state switch>
1) Even if connections are reversed on a 2-wire type switch, the switch will not be damaged because it is protected by a protection circuit, but it will remain in a normally ON state. But reverse wiring in a short circuit load condition should be avoided to protect the switch from being damaged.
2) Even if (+) and (-) power supply line connections are reversed on a 3-wire type switch, the switch will be protected by a protection circuit. However, if the (+) power supply line is connected to the blue [black] wire and the (-) power supply line is connected to the black [white] wire, the switch will be damaged.
<D-M9 \(\square\) >
D-M9 \(\square\) does not have built-in short circuit protection circuit. Be aware that if the power supply connection is reversed (e.g. (+) power supply wire and ( - ) power supply wire connection is reversed), the switch will be damaged.

\section*{* Lead wire colour changes}

Lead wire colours of SMC switches have been changed in order to meet NECA Standard 0402 for production beginning September, 1996 and thereafter. Please refer to the tables provided.
Special care should be taken regarding wire polarity during the time that the old colours still coexist with the new colours.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{2-wire} & \multicolumn{3}{|l|}{3-wire} \\
\hline & Old & New & & Old & New \\
\hline Output (+) & Red & Brown & Power supply & Red & Brown \\
\hline Output (-) & Black & Blue & GND & Black & Blue \\
\hline & & & Output & White & Black \\
\hline
\end{tabular}

Series MXP
Auto Switch Precautions 3
Be sure to read before handling.

\section*{Wiring}

\section*{\(\triangle\) Caution}
1. When the cable sheath is stripped, confirm the stripping direction. The insulator may be split or damaged depending on the direction. (D-M9■ only)


Recommended tool
\begin{tabular}{|c|c|c|}
\hline Manufacturer & Model name & Model no. \\
\hline VESSEL & Wire stripper & No 3000G \\
\hline TOKYO IDEAL CO., LTD & Strip master & \(45-089\) \\
\hline
\end{tabular}
* Stripper for a round cable (ø2.0) can be used for a 2-wire type cable.

\section*{Operating Environment}

\section*{© Warning}
1. Never use in an atmosphere of explosive gases.

The construction of the auto switch is not intended to prevent explosion. Never use in an atmosphere with an explosive gas since this may cause a serious explosion.
2. Do not use in an area where a magnetic field is generated.
The auto switch will malfunction or the magnets inside of an actuator will become demagnetised if used in such an environment.
3. Do not use in an environment where the auto switch will be continually exposed to water.
The switch satisfies the IEC standard IP67 construction (JIS C 0920: watertight construction). Nevertheless, it should not be used in applications where it is continually exposed to water splash or spray. This may cause deterioration of the insulation or swelling of the potting resin inside switch causing a malfunction.
4. Do not use in an environment with oil or chemicals.
Consult with SMC if the auto switch will be used in an environment laden with coolant, cleaning solvent, various oils or chemicals. If the auto switch is used under these conditions for even a short time, it may be adversely effected by a deterioration of the insulation, a malfunction due to swelling of the potting resin, or hardening of the lead wires.
5. Do not use in an environment with temperature cycles.
Consult with SMC if the switch is used where there are temperature cycles other than normal temperature changes, as they may adversely affected the switch internally.

\section*{Operating Environment}
6. Do not use in an environment where there is excessive impact shock.
<Reed switch>
When excessive impact ( \(300 \mathrm{~m} / \mathrm{s}^{2}\) or more) is applied to a reed switch during operation, the contact point may malfunction and generate a signal momentarily ( 1 ms or less) or cut off. Consult with SMC regarding the need to use a solid state switch in a specific environment.
7. Do not use in an area where surges are generated.
<Solid state switch>
When there are units (such as solenoid type lifters, high frequency induction furnaces, motors, etc.) that generate a large amount of surge in the area around an actuator with a solid state auto switch, their proximity or pressure may cause deterioration or damage to the internal circuit of the switch. Avoid sources of surge generation and disorganised lines.
8. Avoid accumulation of iron waste or close contact with magnetic substances.
When a large amount of iron waste such as machining chips or spatter is accumulated, or a magnetic substance (something attracted by a magnet) is brought into close proximity with an auto switch cylinder, it may cause the auto switch to malfunction due to a loss of the magnetic force inside the cylinder.

\section*{Maintenance}

\section*{© Warning}
1. Perform the following maintenance periodically in order to prevent possible danger due to unexpected auto switch malfunction.
1) Securely tighten switch mounting screws.

If screws become loose or the mounting position is dislocated, retighten them after readjusting the mounting position.
2) Confirm that there is no damage to the lead wires.

To prevent faulty insulation, replace switches or repair lead wires, etc., if damage is discovered.
3) Confirm that the green light on the 2-colour display type switch lights up.
Confirm that the green LED is ON when stopped at the set position. If the red LED is ON, when stopped at the set position, the mounting position is not appropriate. Readjust the mounting position until the green LED lights up.

\section*{Other}

\section*{\(\triangle\) Warning}
1.Consult with SMC concerning water resistance, elasticity of lead wires, usage at welding sites, etc.

\title{
Series MXP \\ Specific Product Precautions 1
}

Be sure to read before handling.

\section*{Selection}

\section*{\(\triangle\) Caution}
1. Use a load within a range that does not exceed the operating limit.
Select models based on the maximum load weight and the allowable moment. Refer to model selection on pages 1 and 2 for detailed methods. If operated beyond the operating limit, the eccentric load applied to the guide section will be excessive. This can have an adverse effect on service life due to vibration in the guide unit and loss of accuracy, etc.
2. When performing intermediate stops with an external stopper, employ measures to prevent lurching.
If lurching occurs damage can result. When making a stop with an external stopper to be followed by continued forward movement, first supply pressure to momentarily reverse the table, then retract the intermediate stopper, and finally apply pressure to the opposite port to operate the table again.
3. Do not operate in such a way that excessive external forces or impact forces are applied to the product.
This can cause damage.

\section*{Mounting}

\section*{\(\triangle\) Caution}
1. Do not scratch or gouge the mounting surfaces of the body and table (guide block).
This can cause loss of parallelism in the mounting surfaces, vibration of the guide unit and increased operating resistance, etc.
2. Do not scratch or gouge the transfer surfaces of the body and table (guide block).
This can cause vibration and increased operating resistance, etc.

3. Do not apply strong impacts or excessive moment when mounting work pieces.
Application of external forces greater than the allowable moment can cause vibration of the guide unit and increased operating resistance, etc.
4. Ensure that the parallelism of the mounting surface is 0.02 mm or less.
Poor parallelism of the workpiece mounted on the air slide table, the base, and other parts can cause vibration of the guide unit and increased operating resistance, etc.
5. For connection to a load that has an external support or guide mechanism, select an appropriate connection method and perform careful alignment.
 equipped with auto switches, do not allow items such as magnetic disks, magnetic cards or magnetic tape close to the air slide table. Data may be erased.

7. Do not attach magnets to the table (guide block) section.
Since the table (guide block) is constructed with a magnetic substance, it becomes magnetised when magnets, etc. are attached to it, and this may cause malfunction of auto switches, etc.
8. When mounting an air slide table, use screws of an appropriate length and tighten them properly at no more than the maximum tightening torque.
Tightening with a torque above the limit can cause malfunction, while insufficient tightening can cause slippage and dropping, etc.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{1. Body Tapped} \\
\hline \multicolumn{4}{|c|}{} \\
\hline Model & Bolt & Max. tightening torque
\[
\mathrm{N} \cdot \mathrm{~m}
\] & Max. screw-in depth (e mm) \\
\hline MXPJ6 & M4 x 0.7 & 2.1 & 6 \\
\hline MXP6 & M \(4 \times 0.7\) & 2.1 & 6 \\
\hline MXP8 & \(\mathrm{M} 4 \times 0.7\) & 2.1 & 4.5 \\
\hline MXP10 & \(\mathrm{M} 4 \times 0.7\) & 2.1 & 6 \\
\hline MXP12 & M5 \(\times 0.8\) & 4.4 & 5 \\
\hline MXP16 & M6 \(\times 1\) & 7.4 & 8 \\
\hline
\end{tabular}
2. Body Through-hole

\begin{tabular}{|l|c|c|c|}
\hline Model & Bolt & \begin{tabular}{c} 
Max. tightening torque \\
\(\mathrm{N} \cdot \mathrm{m}\)
\end{tabular} & \begin{tabular}{c} 
Body thickness \\
\((\mathrm{e} \mathrm{mm})\)
\end{tabular} \\
\hline MXPJ6 & \(\mathrm{M} 3 \times 0.5\) & 1.2 & 6 \\
\hline MXP6 & \(\mathrm{M} 3 \times 0.5\) & 1.2 & 6 \\
\hline MXP8 & \(\mathrm{M} 3 \times 0.5\) & 1.2 & 4.5 \\
\hline MXP10 & \(\mathrm{M} 3 \times 0.5\) & 1.2 & 6 \\
\hline MXP12 & \(\mathrm{M} 4 \times 0.7\) & 2.1 & 5 \\
\hline MXP16 & \(\mathrm{M} 5 \times 0.8\) & 4.4 & 8 \\
\hline
\end{tabular}

\title{
Series MXP \\ Specific Product Precautions 2
}

Be sure to read before handling.
Mounting

\section*{© Caution}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{3. Tapped on Body Side} \\
\hline & &  & \\
\hline Model & Bolt & Max. tightening torque
\[
N \cdot m
\] & Max. screw-in depth (e mm) \\
\hline MXP8 & M3 & 1.2 & 4 \\
\hline MXP10 & M3 & 1.2 & 5 \\
\hline MXP12 & M4 & 2.1 & 6 \\
\hline MXP16 & M5 & 4.4 & 8 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{c|}{ 1. Top Mounting } \\
\hline \multicolumn{4}{|c|}{ MXPJ6, MXP6 } \\
\hline
\end{tabular}

\section*{\(\triangle\) Caution}

Since the bolts pass through in the case of MXPJ6 and MXP6, use bolts shorter than the maximum screw-in depth. If long bolts are used, they can touch the body and cause trouble.


\section*{\(\triangle\) Caution}

Side mounting is not possible when equipped with shock absorber.
Mounting
9. When the positioning pinhole is used for mounting an air slide table, select a positioning pin with an appropriate length.

\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Model} & Pinhole diameter & \multicolumn{2}{|c|}{Pinhole depth} \\
\hline & øD & H1mm & \(\mathrm{H}_{2} \mathrm{~mm}\) \\
\hline MXPJ6 & \(2.5{ }^{+0.030}\) & 25 & \\
\hline MXP6 & \(2.5{ }^{+0.030}\) & 2.5 & 2 \\
\hline MXP8 & \(3^{+}{ }_{0}^{+0.030}\) & 2.5 & 1.5 \\
\hline MXP10 & \(3^{+0.030}\) & 2.5 & 1.5 \\
\hline MXP12 & \(3{ }_{0}^{+0.030}\) & 3 & 1.5 \\
\hline MXP16 & \(4 \mathrm{H} 9{ }_{0}^{+0.030}\) & 4 & 2 \\
\hline
\end{tabular}

\section*{Operating Environment}

\section*{\(\triangle\) Caution}
1. Do not use in environments where there is direct exposure to liquids such as cutting oil.
Operation in environments where the body is exposed to cutting oil, coolant or oil mist can cause vibration, increased operating resistance and air leakage, etc.
2. Do not use in environments where there is direct exposure to foreign matter such as dust, dirt, chips and spatter.
This can cause vibration, increased operating resistance and air leakage, etc.
Consult with SMC regarding use in this kind of environment.
3. Be careful about the corrosion resistance of the linear guide.
Be careful the rail and guide block use martensitic stainless steel, which is inferior to austenitic stainless steel in terms of corrosion resistance.

\section*{Adjuster Option Handling Precautions}

\section*{With Shock Absorber}

\section*{\(\triangle\) Caution}
1. Never turn the screw on the bottom of the shock absorber body.
This is not an adjustment screw. Turning it can cause oil leakage.
2. Do not scratch the sliding surface of the shock absorber's piston rod.
This can cause a loss of durability and return malfunction.


\title{
Series MXP \\ Specific Product Precautions 3
}

Be sure to read before handling.

\section*{Adjuster Option Handling Precautions}

\section*{\(\triangle\) Caution}
3. The shock absorber is a consumable part. Replacement is necessary when a drop in energy absorbing capacity is noticed.
\begin{tabular}{|c|c|}
\hline Applicable size & Shock absorber model \\
\hline MXP10 & RB0805 \\
\hline MXP12 & RB0805 \\
\hline MXP16 & RB0806 \\
\hline
\end{tabular}
4. Use the tightening torque in the table below for the shock absorber's lock nut.
\begin{tabular}{|c|c|}
\hline Bolt & Tightening torque \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline MXP10 & \\
MXP12 & 1.67 \\
MXP16 & \\
\hline
\end{tabular}

Rust may occur specifically in an environment where water drops from condensation adhere to a surface.
5. Provide shade in locations exposed to direct sunlight.
6. Block off sources of heat located near by.

When there are heat sources in the surrounding area, radiated heat may cause the product's temperature to rise and exceed the operating temperature range. Block off the heat with a cover, etc.
7. Do not use in locations where vibration or impact occur.
Consult with SMC regarding use in this kind of environment, as damage and malfunction can result.


Loosen the lock nut, adjust the stroke with a hexagon wrench from the side marked with an arrow and secure with the lock nut.

\section*{\(\triangle\) Caution}

\section*{Urethane Bumper}

If not adjusted for effective operation of the urethane bumper, impact will increase and have an adverse effect on service life. As a guide, adjust so that dimension \(L_{1}\) is less than the value shown in "Table 1 ".


\section*{Stroke Adjustment}
\begin{tabular}{l} 
Table 1 \\
\hline \begin{tabular}{|c|c|}
\hline \multicolumn{1}{|l|}{ Model } & L1 (mm) \\
\hline MXP6-5 & 9 (one side only) \\
\hline MXP6-10 & 9 (one side only) \\
\hline MXP8-10 & 7 \\
\hline MXP8-20 & 6 \\
\hline MXP10-10 & 7 \\
\hline MXP10-20 & 6 \\
\hline MXP12-15 & 7 \\
\hline MXP12-25 & 7 \\
\hline MXP16-20 & 8 \\
\hline MXP16-30 & 8 \\
\hline
\end{tabular}
\end{tabular}

\section*{Metal Stopper}

In the case of a metal stopper, adjust so that the stroke adjuster hits the end face of the guide block.
As a guide, adjust so that dimension \(L 2\) is less than the value shown in "Table 2".


Table 2
\begin{tabular}{|c|c|}
\hline Model & L2 \((\mathrm{mm})\) \\
\hline MXP6-5C & 10 (one side only) \\
\hline MXP6-10C & 10 (one side only) \\
\hline MXP8-10C & 9 \\
\hline MXP8-20C & 8 \\
\hline MXP10-10C & 9 \\
\hline MXP10-20C & 8 \\
\hline MXP12-15C & 8 \\
\hline MXP12-25C & 8 \\
\hline MXP16-20C & 8 \\
\hline MXP16-30C & 8 \\
\hline
\end{tabular}

\section*{Shock Absorber}

When equipped with shock absorber, adjust so that the end face of the shock absorber hits the guide block. If the shock absorber does not operate effectively, impact will increase and have an adverse effedct on service life. As a guide, adjust so that dimension \(\mathrm{L}_{3}\) is less than the value shown in "Table 3".

Table 3
\begin{tabular}{|c|c|}
\hline \hline Model & \(\mathbf{L}_{3}(\mathrm{~mm})\) \\
\hline MXP10-10B & 19 \\
\hline MXP10-20B & 15 \\
\hline MXP12-15B & 15 \\
\hline MXP12-25B & 15 \\
\hline MXP16-20B & 15 \\
\hline MXP16-30B & 15 \\
\hline
\end{tabular}

SSMC


SMC Pneumatik GmbH (Austria) Girakstrasse 8, A-2100 Korneuburg Phone: +43 2262-62280, Fax: +43 2262-62285 E-mail: office@smc.at
http://www.smc.at


SMC Pneumatics N.V./S.A.
Nijverheidsstraat 20, B-2160 Wommelgem Phone: +32 (0)3-355-1464, Fax: +32 (0)3-355-1466 E-mail: post@smcpneumatics.be http://www.smcpneumatics.be


\section*{Bulgaria}

SMC Industrial Automation Bulgaria EOOD 16 kliment Ohridski Blvd., fl. 13 BG-1517 Sofia Phone:+359 29744492 , Fax:+359 29744519 E-mail: office@smc.bg
http://www.smc.bg


SMC Industrijska automatika d.o.o
Crnomerec 12, 10000 ZAGREB
Phone: +385 137766 74, Fax: +385 13776674
E-mail: office@smc.hr
http://www.smceu.com


Czech Republic
SMC Industrial Automation CZ s.r.o.
Hudcova 78a, CZ-61200 Brno
Phone: +420 541424611 , Fax: +420 541218034
E-mail: office@smc.cz
http://www.smc.cz


SMC Pneumatik A/S
Knudsminde 4B, DK-8300 Odder
Phone: +45 70252900, Fax: +45 7025290
E-mail: smc@smc-pneumatik.dk
http://www.smcdk.com


SMC Pneumatics Estonia OÜ
Laki 12-101, 10621 Tallinn
Phone: +372 (0)6 593540, Fax: +372 (0)6593541
E-mail: smc@smcpneumatics.ee
http://www.smcpneumatics.ee


Finland
SMC Pneumatics Finland OY
PL72, Tiistinniityntie 4, SF-02031 ESPOO
Phone: +358 207513513 , Fax: +358 207513595
E-mail: smcfi@smc.f
http://www.smc.fi


SMC Pneumatique, S.A
1, Boulevard de Strasbourg, Parc Gustave Eiffel Bussy Saint Georges F-77607 Marne La Vallee Cedex 3 Phone: +33 (0)1-6476 1000, Fax: +33 (0)1-6476 1010 E-mail: contact@smc-france.fr
http://www.smc-france.fr


Germany
SMC Pneumatik GmbH
Boschring 13-15, D-63329 Egelsbach
Phone: +49 (0)6103-4020, Fax: +49 (0)6103-402139
E-mail: info@smc-pneumatik.de
http://www.smc-pneumatik.de

S. Parianopoulus S.A
7. Konstantinoupoleos Street, GR-11855 Athens Phone: +30 (0)1-3426076, Fax: +30 (0)1-3455578
E-mail: parianos@hol.gr
http://www.smceu.com


SMC Hungary Ipari Automatizálási Kft. Budafoki ut 107-113, H-1117 Budapest
Phone: +36 1371 1343, Fax: +36 13711344 E-mail: office@smc-automation.hu http://www.smc-automation.hu


SMC Pneumatics (Ireland) Ltd
2002 Citywest Business Campus, Naas Road, Saggart, Co. Dublin Phone: +353 (0) \(1-403\) 9000, Fax: +353 (0) 1-464-0500 E-mail: sales@smcpneumatics.ie http://www.smcpneumatics.ie


SMC Italia S.p.A
Via Garibaldi 62, 1-20061 Carugate, (Milano)
Phone: +39 (0)2-92711, Fax: +39
http://www.smcitalia.it

\section*{}

SMC Pneumatics Latvia SIA
Smerla 1-705, Riga LV-1006, Latvia Phone: +371 (0)777-94-74, Fax: +371 (0)777-94-75 E-mail: info@smclv.lv http://www.smclv.lv


UAB Ottensten Lietuva
Savanoriu pr. 180, LT-2600 Vilnius, Lithuania Phone/Fax: +370-2651602


SMC Pneumatics BV
De Ruyterkade 120, NL-1011 AB Amsterdam
Phone: +31 (0)20-5318888, Fax: +31 (0)20-5318880
E-mail: info@smcpneumatics.n
http://www.smcpneumatics.nl

\section*{Norway}

SMC Pneumatics Norway A/S
Vollsveien 13 C, Granfos Næringspark N-1366 Lysaker
Tel: +47 671290 20, Fax: +47 67129021
E-mail: post@smc-norge.no
http://www.smc-norge.no

\section*{}

\section*{Poland}

SMC Industrial Automation Polska Sp.z.o.o. ul. Konstruktorska 11A, PL-02-673 Warszawa,
Phone: +48 22548 5085, Fax: +48 225485087
E-mail: office@smc.p
ttp://www.smc.pl

\section*{Portugal}

SMC Sucursal Portugal, S.A
Rua de Engo Ferreira Dias 452, 4100-246 Porto
hone: +351 22-610-89-22, Fax: +351 22-610-89-36
E-mail: postpt@smc.smces.es
http://www.smces.es


SMC Romania srl
Str Frunzei 29, Sector 2, Bucharest
Phone: +40 213205111, Fax: +40 213261489 E-mail: smcromania@smcromania.ro http://www.smcromania.ro

\section*{Russia}

SMC Pneumatik LLC.
36/40 Sredny pr. St. Petersburg 199004
Phone.:+812 1185445 , Fax:+812 1185449
E-mail: smcfa@peterlink.ru
http://www.smc-pneumatik.ru

\section*{\(\neq\) Slovakia}

SMC Priemyselná Automatizáciá, s.r.o.
Námestie Martina Benku 10, SK-81107 Bratislava
Phone: +421 2444 56725, Fax: +421 244456028
E-mail: office@smc.sk
http://www.smc.sk


SMC industrijska Avtomatika d.o.o.
Grajski trg 15, SLO-8360 Zuzemberk
Phone: +386 73885240 Fax: +386 73885249
e-mail: office@smc-ind-avtom.si
http://www.smc-ind-avtom.si

\section*{OTHER SUBSIDIARIES WORLDWIDE:}

ARGENTINA, AUSTRALIA, BOLIVIA, BRASIL, CANADA, CHILE, CHINA, HONG KONG, INDIA, INDONESIA, MALAYSIA, MEXICO, NEW ZEALAND, PHILIPPINES, SINGAPORE, SOUTH KOREA,

TAIWAN, THAILAND, USA, VENEZUELA


SMC Pneumatitzerland
SMC Pneumatik AG
Dorfstrasse 7, CH-8484 Weisslingen
Phone: +41 (0)52-396-3131, Fax: +41 (0)52-396-3191
E-mail: info@smc.ch
http://www.smc.ch

\section*{(* Turke}

Entek Pnömatik San. ve Tic Ltd. Sti. Perpa Tic. Merkezi Kat: 11 No: 1625, TR-80270 Okmeydani Istanbul Phone: +90 (0)212-221-1512, Fax: +90 (0)212-221-1519 E-mail: smc-entek@entek.com.tr http://www.entek.com.tr

\section*{N}

SMC Pneumatics (UK) Ltd
Vincent Avenue, Crownhill, Milton Keynes, MK8 OAN Phone: +44 (0)800 1382930 Fax: +44 (0) 1908-555064
E-mail: sales@smcpneumatics.co.uk http://www.smcpneumatics.co.uk
http://www.smceu.com http://www.smcworld.com```


[^0]:    Can be used based on
    $\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha^{\prime} 3=$
    $0.17+0.013+0.24+0.37=0.79<1$

