180° Angular Gripper Cam Style

Rack \& Pinion Style Series MHY2/MHW2

Cam actuation style is now standardised!

180° Angular Gripper

Cam Style

Series MHY2/MHW2

Series MHY/Cam Style

Light and compact size in small bore sizes

Model	Bore size mm	Effective holding moment* Nm	Overall length Lmm	Weight
MHY2-10D	10	0.16	L g	
MHY2-16D	16	0.54	71	70
MHY2-20D	20	1.10	84	150
MHY2-25D	25	2.28	106	320

*At pressure of 0.5 MPa

Improved mounting repeatability

Resistance to dusty environments
Reduced opening sizes helps prevent foreign substance from entering.

Variation

Stainless steel fingers are standard.

Series MHW/Rack \& Pinion Style

Unique seal design allows shorter total length construction
 and constant holding force when opening and closing fingers.
(PAT.PEND)

Model	Bore size mm	Holding mement* Nm	Over length Lmm	Weight
MHW2-20D	20	0.30	68	300
MHW2-25D	25	0.73	78	510
MHW2-32D	32	1.61	93.5	905
MHW2-40D	40	3.70	117.5	2135
MHW2-50D	50	8.27	154	5100

*At the pressure of 0.5 MPa

Auto switch mounting

 at 4 locationsKey connection is ideal for impact resistance.

Key connection between finger and shaft prevents finger angle slippage during impact.
at 4 loca

Key connection is
ideal for impact
resistance.

Key conection betwen finger
añ shat prevents fingerangle
silipaage during impoct.

Series MHY2/MHW2

How to Select the Applicable Model

How to Select

Effective holding force

Series MHY2/MHW2 Double acting

- Indication of effective holding force

The holding force shown in the tables represents the holding force of one finger when all fingers and attachments are in contact with the work. (F : Thrust of one finger)

External hold

MHY2-10D

MHY2-16D

MHY2-20D

MHY2-25D

MHW2-20D

MHW2-25D

Step 2 Confirmation of holding point

MHW2-32D

MHW2-40D

MHW2-50D

- Work should be held at a point within the range of overhanging distance (H) for a given pressure indicated in the tables on the right.
- When the work is held at a point outside of the recommended range for a given pressure, it may causes adverse effect on the product life.

Series MHY2/MHW2

How to Select the Applicable Model

Step 3 Confirm moment of inertia of attachments

Confirm the moment of inertia for the attachment at one side. Calculate the moment of inertia for A and B separately as shown in the figures on the right.

Procedure	Formula	Calculation example
1 Check the operating conditions, dimensions of attachment, etc.		Operating model: MHY2-16D Opening time: 0.15 s $\mathrm{a}=40(\mathrm{~mm})$ $\mathrm{b}=7(\mathrm{~mm})$ $\mathrm{c}=8(\mathrm{~mm})$ $\mathrm{d}=5(\mathrm{~mm})$ $e=10(\mathrm{~mm})$ $f=12(\mathrm{~mm})$ $\mathrm{f}=12(\mathrm{~mm})$
2 Calculate the moment of inertia of attachment.	A part Moment of inertia around Z 1 axis $\mathrm{Iz} 1=\left\{\mathrm{m}_{1}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right) / 12\right\} \times \frac{10^{-6}}{*}$ Moment of inertia around Z axis $\begin{aligned} & \mathrm{I}_{\mathrm{A}}=\mathrm{I}_{1}+\mathrm{m}_{1} \mathrm{r}_{1}{ }^{2} \times \frac{10^{-6}}{\text { B part }^{*}} \mathrm{z} \end{aligned}$ Calculation of weight $m_{2}=d X$ e XfX Specific gravity Moment of inertia around Z2 axis $\mathrm{Iz2}=\left\{\mathrm{m}_{2}\left(\mathrm{~d}^{2}+\mathrm{e}^{2}\right) / 12\right\} \times \frac{10^{-6}}{*}$ Moment of inertia around Z axis $\mathrm{IB}=\mathrm{IZ2}+\mathrm{m}_{2} \mathrm{r}_{2}^{2} \times \frac{10^{-6}}{*}$ Total moment of inertia $I=I A+I B$ \qquad	Material of attachment: Aluminum alloy $($ Specific gravity $=2.7)$ $\mathrm{r} 1=37(\mathrm{~mm})$ $\begin{aligned} \mathrm{m}_{1} & =40 \times 7 \times 8 \times 2.7 \times 10^{-6} \\ & =0.006(\mathrm{~kg}) \\ \mathrm{Iz} 1 & =\left\{0.006 \times\left(40^{2}+7^{2}\right) / 12\right\} \times 10^{-6} \\ & =0.8 \times 10^{-6}\left(\mathrm{kgm}^{2}\right) \\ \mathrm{I}_{\mathrm{A}} & =0.8 \times 10^{-6}+0.006 \times 37^{2} \times 10^{-6} \\ & =9.0 \times 10^{-6}\left(\mathrm{kgm}^{2}\right) \end{aligned}$ $r^{2}=47(\mathrm{~mm})$ $\begin{aligned} \mathrm{m} 2 & =5 \times 10 \times 12 \times 2.7 \times 10^{-6} \\ & =0.002(\mathrm{~kg}) \\ \mathrm{Iz} 2 & =\left\{0.002 \times\left(5^{2}+10^{2}\right) / 12\right\} \times 10^{-6} \\ & =0.02 \times 10^{-6}\left(\mathrm{kgm}^{2}\right) \\ \mathrm{IB} & =0.02 \times 10^{-6}+0.002 \times 47^{2} \times 10^{-6} \\ & =4.4 \times 10^{-6}\left(\mathrm{kgm}^{2}\right) \\ \mathrm{I} & =9.0 \times 10^{-6}+4.4 \times 10^{-6} \\ & =13.4 \times 10^{-6}=0.13 \times 10^{-4}\left(\mathrm{kgm}^{2}\right) \end{aligned}$
3 Determine the allowable moment of inertia from the graph.	MHY2-16D	The moment of inertia is determined to be $0.9 \times 10^{-4}\left(\mathrm{kgm}^{2}\right)$ according to the operating time (0.15 s) from the graph on the left.
4 Confirm the moment of inertia of one attachment is within the allowable range.	Moment of inertia of attachment < Allowable moment of intertia	$0.13 \times 10^{-4}\left(\mathrm{kgm}^{2}\right)<0.9 \times 10^{-4}\left(\mathrm{kgm}^{2}\right)$ Possible to use this model MHY2-16D completely.

Symbol

Symbol	Definition	Unit
Z	Finger rotation axis	-
Z 1	Axis on the centre gravity of A part of attachment and parallel to Z	-
Z 2	Axis on the centre gravity of B part of attachment and parallel to Z	-
I	Total moment of inertia for attachment	kgm^{2}
$\mathrm{IZ1}$	Inertia moment around the Z 1 axis of A part of attachment	kgm^{2}
$\mathrm{IZ2}$	Inertia moment around the Z 2 axis of B part of attachment	kgm^{2}

Symbol	Definition	Unit
IA	Moment of inertia around the Z axis of A part of attachment	kgm^{2}
IB	Moment of inertia around the Z axis of B part of attachment	kgm^{2}
m 1	Weight of A part of attachment	kg
m 2	Weight of B part of attachment	kg
r 1	Distance between Z and $Z 1$ axis	mm
r 2	Distance between Z and $Z 2$ axis	mm

Allowable range of inertia moment of attachment

MHY2-16D

MHY2-20D

MHY2-25D

MHW2-20D

MHW2-25D

MHW2-32D

MHW2-40D

180° Angular Gripper Cam Style

Series MHY2 ø10, ø16, ø20, ø25

How to Order

Applicable Auto Switches

Type	Special function	Electrical entry	Indicator	Wiring (Output)	Load voltage			Symbol		Lead wire length (m)		Applicable load		
								0.5	3					
					DC		AC			Perpendicular	In-line		(-)	(L)
Solid state		Grommet	With	3 wire (NPN)	24 V	$\begin{gathered} 5 \mathrm{~V} \\ 12 \mathrm{~V} \end{gathered}$	-	M9NV	M9N	\bigcirc	\bigcirc	Relay PLC		
	-			3 wire (PNP)				M9PV	M9P	\bigcirc	\bigcirc			
				2 wire		12V		M9BV	M9B	\bigcirc	\bigcirc			
	Diagnosis indicator (2 colour indication)			3 wire (NPN)		$\begin{gathered} 5 \mathrm{~V} \\ 12 \mathrm{~V} \end{gathered}$		M9NWV	M9NW	\bigcirc	-			
				3 wire (PNP)				M9PWV	M9PW	\bigcirc	\bigcirc			
				2 wire		12V		M9BWV	M9BW	\bigcirc	-			

[^0]Specifications

Symbol

Double acting

Fluid	Air
Operating pressure	0.1 to 0.6 MPa
Ambient and fluid temperature	-10 to $60^{\circ} \mathrm{C}$
Repeatability	$\pm 0.2 \mathrm{~mm}$
Max. operating frequency	60 c .p.m
Lubrication	Not required
Action	Double acting
Auto switch (Optional) Note)	Solid state switch (3 wire, 2 wire)

Note) Refer to p. 6-15 for details of auto switch specifications.

Model

Model	Bore size (mm)	Effective holding force$(\mathrm{Nm})^{(1)}$	Opering angle (Both sides)		$\begin{gathered} \text { Weight }^{(2)} \\ (\mathrm{g}) \end{gathered}$
			$\begin{array}{\|l\|} \hline \text { Opening } \\ \text { side } \end{array}$	$\begin{aligned} & \text { Closing } \\ & \text { side } \end{aligned}$	
MHY2-10D	10	0.16	180°	-3°	70
MHY2-16D	16	0.54			150
MHY2-20D	20	1.10			320
MHY2-25D	25	2.28			560

Note 1) At the pressure of 0.5 MPa
Note 2) Not including auto switch

W)
-Refer to the "How to Select the Applicable Model" on p.5-244
-Refer to p.5-244 and 5-245 for the details of effective holding force and allowable overhanging distance.

Series MHY2

Construction

Closed

© 10

ø 16

ø 20, ø 25

Open

Component Parts

No.	Description	Material	Note
(1)	Body	Aluminum alloy	Hard anodized
(2)	Piston	$\varnothing 10:$ Stainless steel $\varnothing 16$ to 25: Aluminum alloy	$\varnothing 16$ to 25: Chromated
(3)	Joint	Stainless steel	Heat treatment
4	Finger	Stainless steel	Heat treatment
(5)	Cap	Resin	
6	Ware ring	Resin	
(7)	Shaft	Stainless steel	Nitriding
(8)	Bushing A	Sintered alloy steel	

Component Parts

No.	Description	Material	Note
(9)	Bushing B	Sintered alloy steel	
(10)	End plate	Stainless steel	
(11)	Bumper	Urethane rubber	
(12)	Cylindrical roller	High cabon chrome bearing steel	
(13)	Joint roller	Carbon steel	Nitriding
(14)	Rubber magnet	Synthetic rubber	
(15)	C-shape snap ring	Carbon steel	Nickel plated
(16)	Piston bolt	Stainless steel	

Replacement Parts: Seal Kits

No.	Description	Material	Kit No.			
			MHY2-10D	MHY2-16D	MHY2-20D	MHY2-25D
(17)	Seal kit	NBR	MHY10-PS	MHY16-PS	MHY20-PS	MHY25-PS
(18)						
(20)						

Dimensions
MHY2-10D

Auto switch mounting groove position
Pin hole positioning

MHY2-10D2

Opening/closing direction through hole type

Series MHY2

Dimensions
MHY2-16D

MHY2-16D2

Opening/closing direction through hole type

MHY2-20D

Auto switch mounting groove position

MHY2-20D2

Series MHY2

Dimensions

MHY2-25D

Pin hole positioning

Auto switch mounting groove position

MHY2-25D2

Opening/closing direction through hole type

180° Angular Gripper Series MHY

Projection of Auto Switch from Body Edge

The projection of an auto switch from the edge of the body is shown in the table below. Use the table as a guideline for mounting.

Note) 2 color indicator type and perpendicular entry type protrude in the direction of the lead wire entry.

When auto switch D-M9N is used

When auto switch D-M9 \square V is used

When auto switch D-M9BA is used
Max. protrusion of auto switch from edge of body (L) Unit: mm

Auto switchmodel No.GripperModel No.		Protrusion						
		In-line				Perpendicular		
		D-M9N	D-M9B	D-M9BA	D-M9NW	D-M9NV	D-M9BV	D-M9NWV
MHY2-10D	0	-	-	-	-	-	-	-
	S	3	8	13	6	1	1	8
MHY2-16D	O	-	-	-	-	-	-	-
	S	3	8	13	7	1	1	8
MHY2-20D	O	-	-	-	-	-	-	-
	S	-	5	10	4	-	-	5
MHY2-25D	O	-	-	-	-	-	-	-
	S	-	3	9	3	-	-	3

		$\begin{aligned} & \text { D-M9N(V) } \\ & \text { D-M9B(V) } \end{aligned}$	D-M9NW(V)		D-M9BA		
		Red light at ON	Green light at ON	Red light at ON	Green light at ON		
MHY2-10D	Finger fully closed		2°	2°	4°	2°	3°
	Finger fully open	4°	4°	7°	4°	5°	
MHY2-16D	Finger fully closed	2°	2°	4°	2°	2°	
	Finger fully open	3°	3°	6°	3°	4°	
MHY2 -20D	Finger fully closed	2°	2°	3°	2°	2°	
	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Finger fully } \\ \text { open } \end{array} \\ \hline \end{array}$	3°	3°	5°	3°	3°	
MHY2 -25D	Finger fully closed	1°	1°	3°	1°	2°	
	$\begin{aligned} & \hline \begin{array}{l} \text { Finger fully } \\ \text { open } \end{array} \\ & \hline \end{aligned}$	2°	2°	5°	2°	3°	

[^0]: * Lead wire length: $0.5 \mathrm{~m} \cdot \ldots-$ - (Example) M9N

 Note 1) Refer to "Auto Switch Specifications" on p.6-15

