

Overall length

Weight

Size	CRB	CRB2	Reduction rate					
10	39	42	7 %	Distance within a set or set of the set of the set of the				
15	62	68	9 %	Piping, wiring, and angle adjustment can be performed on the same side for easier mounting.				
20	115	222	48 %	(pontania di ano dano di ano di an				
30	216	387	44 %	Piping Hexagon wrench				
40	380	631	40 %					
auto switch) (Size	e CRB2 (Rotating angle: s s 10 and 15 have been cor Compact soli auto switch D-M9 O-M9	npared without an ar						

[g]

The position of the chamfered portion of the shaft can be easily checked using the rotating angle indicator. (Only for the CDRB with auto switch) Excludes rotating angle 270°

Shaft type variations Interchangeable mounting * If an auto switch is to be mounted, choose a single shaft (options (1) and (5)). The mounting pitch and shaft configuration are the same as those for the CRB2. **2** Double shaft: CRBW **3Double shaft: CRBJ 1**Single shaft: CRBS The thread for mounting a workpiece is interchangeable (6 positions) Round shaft Chamfer (3 positions for size 10) Chamfer Interchangeable mounting pitch 0 6 Chamfer Chamfer **4** Double shaft: CRBK **5**Single shaft: CRBT 6 Double shaft: CRBY The shaft configuration is interchangeable. Round shaft Round shaft Chamfer 6

Mounting

Round shaft

Chamfer

* A flange mounting bracket assembly is available as an option. For details, refer to page 41.

6

 \bigcirc

Each of the units below for the CRB2 series can be mounted to the CRB series.

- The vertical auto switch unit and the angle adjustment unit are the same as those of the CRB2 series. Replacement of just the CRB body can be done during maintenance.
- Each of the units for the CRB2 series can be mounted to the CRB without an auto switch (CRBW).

Series Variations

Model	Туре	Applicable auto switch	Vane type	Size	Rotating angle	Outpu Single shaft		Rotating angle adjustment range	
CRB	Standard (Without auto switch)	_			90° 180° 270°	•	•	90°±10° (One side ±5°) 180°±10° (One side ±5°) (Sizes 20, 30, and 40 only)	
CDRB	Standard (With auto switch)	rd (With auto switch) D-M9⊡			90° 180°	•	_	90°±10° (One side ±5°) 180°±10° (One side ±5°) (Sizes 20, 30, and 40 only)	
CRB-A	With vertical auto switch unit (CRB2)	Refer to the applicable auto switches shown in the table above.*1	Single vane	10 15		•	_	90°±10° (One side ±5°) 180°±10° (One side ±5°) (Sizes 20, 30, and 40 only)	
CRBD-B	With angle adjustment unit (CRB2)	_		Single vale	20 30 40	90° 180° 270°	•		0 to 85° (90° specification) 0 to 175° (180° specification) (For sizes 10 and 15) 0 to 100° (90° specification) 0 to 190° (180° specification) (For sizes 20, 30, and 40) 0 to 240° (270° specification) (Sizes 20 and 30 only)
CRBD-C	With vertical auto switch unit (CRB2) With angle adjustment unit (CRB2)	Refer to the applicable auto switches shown in the table above.*1					•	_	0 to 85° (90° specification) 0 to 175° (180° specification) (For sizes 10 and 15) 0 to 100° (90° specification) 0 to 190° (180° specification) (For sizes 20, 30, and 40) 0 to 240° (270° specification) (Sizes 20 and 30 only)

CONTENTS

Vane Type Rotary Actuator CRB Series

Vane Type Rotary Actuator	
With Vertical Auto Switch Unit	
CRB -A Series	

How to Order	p. 27
Construction	p. 28
Dimensions	p. 29

Vane Type Rotary Actuator

With Angle Adjustment Unit CRB -B Series					
With Vertical Auto Switch Unit and Angle Adjustment Unit CRB -C Series					
How to Order p. 32					
Construction p. 34					
Dimensions p. 35					

Component Unit p. 42
• Auto Switch Mounting p. 43
Prior to Use Auto Switch Connections and Examples p. 47
• Specific Product Precautions p. 48
Safety Instructions Back cover

Rotary Actuator Model Selection

CONTENTS

1 Calculation of Mome	nt of Inertia	p. 7
Equation Table of Moment	of Inertia	
		р. 9

2	Calculation of Required Torque	р. 10
	●Load Type	· p. 10
	Effective Torque ······	· p. 10

p. 10

Confirmation of Rotation Time 3

4	Calculation of Kinetic Energy	p. 11
	 Allowable Kinetic Energy and Rotation Time Adjustment Range Moment of Inertia and Rotation Time 	•
5	Confirmation of Allowable Load	p. 12

5 Confirmation of Allowable Load

6	Calculation of Air Consumption and Required Air Flow Capacity	p. 13
	Inner Volume and Air Consumption	·· р. 13

• Air Consumption Calculation Graph p. 14

Rotary Actuator Model Selection

Selection Procedures	Note	Selection Example			
♦ List of Operating Conditions					
 Initially selected models Operating pressure [MPa] Mounting orientation Load type Static load Resistance load Inertial load Load dimensions [m] Load mass [kg] Rotation time [s] Rotating angle [rad] 	The unit for the rotating angle is radian. $180^\circ = \pi$ rad $90^\circ = \pi/2$ rad	$\begin{tabular}{ c c c c c } \hline Load 2 & r = 10, 0.1 \ kg \\ \hline 0.15 \ kg$			
1 Calculation of Moment of	Inertia				
Calculate the inertial moment of load.	Loads are generated from multiple parts. The inertial moment of each load is calculated, and then totaled.	Inertial moment of load 1: I ₁ I ₁ = 0.15 x $\frac{0.06^2 + 0.03^2}{12}$ + 0.15 x 0.025 ² = 0.00015 Inertial moment of load 2: I ₂ I ₂ = 0.1 x $\frac{0.01^2}{2}$ + 0.1 x 0.04 ² = 0.000165 Total inertial moment: I I = I ₁ + I ₂ = 0.000315 [kg·m ²]			
2 Calculation of Required T	orque				
Calculate the required torque for each load type and confirm whether the values fall in the effective torque range. • Static load (Ts) Required torque T = Ts • Resistance load (Tf) Required torque T = Tf x (3 to 5) • Inertial load (Ta) Required torque T = Ta x 10	When the resistance load is rotated, the required torque calculated from the inertial load must be added. Required torque T = Tf x (3 to 5) + Ta x 10	Inertial load: Ta Ta = I· $\dot{\omega}$ $\dot{\omega} = \frac{2\theta}{t^2} [rad/s^2]$ Required torque: T T = Ta x 10 = 0.000315 x $\frac{2 x \pi}{0.6^2}$ x 10 = 0.055 [N·m] 0.055 N·m < Effective torque OK			
3 Confirmation of Rotation	Time				
Confirm whether the time falls in the rotation time adjustment range.	Consider the time after converted in the time per 90°. (0.6 s/180° is converted in 0.3 s/90°.)	$0.04 \le t \le 0.5$ t = 0.3 s/90° OK			
4 Calculation of Kinetic Energy	ergy				
Calculate the kinetic energy of the load and confirm whether the energy is below the allowable range.	If the energy exceeds the allowable range, a suitable cushioning mechanism such as a shock absorber must be externally installed.	Kinetic energy: E $E = \frac{1}{2} \cdot I \cdot \omega^{2}$ $\omega = \frac{2 \cdot \theta}{t}$ $E = \frac{1}{2} \times 0.000315 \times \left(\frac{2 \times \pi}{0.6}\right)^{2} = 0.01725 \text{ [J]}$ 0.01725 [J] < Allowable energy OK			
5 Confirmation of Allowable	e Load				
Confirm whether the load applied to the product is within the allowable range.	If the load exceeds the allowable range, a bearing or similar must be externally installed.	Thrust load: M 0.15 x 9.8 + 0.1 x 9.8 = 2.45 [N] 2.45 [N] < Allowable thrust load OK			
6 Calculation of Air Consun	nption and Required Air Flow Ca	pacity			
Air consumption and required air flow capacity are calculated when necessary.					

Rotary Actuator Model Selection

Calculation of Moment of Inertia

The moment of inertia is a value indicating the inertia of a rotating body, and expresses the degree to which the body is difficult to rotate, or difficult to stop.

It is necessary to know the moment of inertia of the load in order to determine the value of required torque or kinetic energy when selecting a rotary actuator.

Moving the load with the actuator creates kinetic energy in the load. When stopping the moving load, it is necessary to absorb the kinetic energy of the load with a stopper or a shock absorber.

The kinetic energy of the load can be calculated using the formulas shown in Fig. 1 (for linear motion) and Fig. 2 (for rotation motion).

In the case of the kinetic energy for linear motion, the formula (1) shows that when the velocity V is constant, it is proportional to the mass m. In the case of rotation motion, the formula (2) shows that when the angular velocity ω is constant, it is proportional to the moment of inertia.

Linear motion

Rotation motion

	$ω^2 = \frac{1}{2} \cdot \mathbf{m} \cdot \mathbf{r}^2 \cdot \omega^2 \cdot \dots \cdot (2)$ netic energy oment of inertia (= m·r ²) ngular velocity ass adjus of rotation

Equation Table of Moment of Inertia

1. Thin shaft

Position of rotational axis: Perpendicular to the shaft through the centre of gravity

$$I = \mathbf{m} \cdot \frac{\mathbf{a}^2}{12}$$

Position of rotational axis: Parallel to side b and through the centre of gravity

$$I = \mathbf{m} \cdot \frac{\mathbf{a}^2}{12}$$

3. Thin rectangular plate (Including rectangular parallelepiped)

Position of rotational axis: Perpendicular to the plate through the centre of gravity

$$I = \mathbf{m} \cdot \frac{\mathbf{a}^2 + \mathbf{b}^2}{12}$$

4. Round plate (Including column) Position of rotational axis: Through the centre axis **r**² 2

$$1 = \mathbf{m} \cdot -$$

5. Solid sphere

Position of rotational axis: Through the centre of diameter

$$I = \mathbf{m} \cdot \frac{2\mathbf{r}^2}{5}$$

As the moment of inertia is proportional to the squares of the mass and the radius of rotation, even when the load mass is the same, the moment of inertia will be squared as the radius of rotation grows bigger. This will create greater kinetic energy, which may result in damage to the product.

When there is rotation motion, product selection should be based not on the load mass of the load, but on the moment of inertia.

Moment of Inertia Formula

The basic formula for finding a moment of inertia is shown below.

This formula represents the moment of inertia for the shaft with mass m, which is located at distance r from the shaft. For actual loads, the values of the moment of inertia are calculated depending on configurations, as shown below.

I: Moment of inertia

m: Load mass

 \Rightarrow p. 8 Calculation example of moment of inertia

 \Rightarrow p. 9 Graph for calculating the moment of inertia

6. Thin round plate
Position of rotational axis: Through the
centre of diameter

$$I = m \cdot \frac{r^{2}}{4}$$
7. Cylinder
Position of rotational axis: Through the
centre of diameter and gravity

$$I = m \cdot \frac{3r^{2} + a^{2}}{12}$$
8. When the rotational axis and load centre
of gravity are not consistent

$$I = K + m \cdot L^{2}$$
K: Moment of inertia around
the load center of gravity
4. Round plate $K = m \cdot \frac{r^{2}}{2}$
9. Gear transmission
(a) No. of teeth = a
(b) No. of teeth = a
(c) No. of teeth

Calculation Example of Moment of Inertia

If the shaft is located at a desired point of the load:

If a lever is attached to the shaft and a cylinder and a gripper are mounted to the tip of the lever:

Example: ① Find the lever's moment of inertia: $I_{1} = m_{1} \cdot \frac{L^{2}}{3}$ ② Find the cylinder's moment of inertia: $I_{2} = m_{2} \cdot \frac{(D/2)^{2}}{2} + m_{2} \cdot L^{2}$ ③ Find the gripper's moment of inertia: $I_{3} = m_{3} \cdot \frac{a^{2}+b^{2}}{12} + m_{3} \cdot L^{2}$ ④ Find the actual moment of inertia: $I = I_{1} + I_{2} + I_{3}$

m1: Mass of lever

m2: Mass of cylinder

m₃: Mass of gripper ∠

If a load is rotated through the gears:

Calculation Example

L = 0.2 m, Ø D = 0.06 m, a = 0.06 m, b = 0.03 m m1 = 0.5 kg, m2 = 0.4 kg, m3 = 0.2 kg	
$I_1 = 0.5 \text{ x} \frac{0.2^2}{3} = 0.67 \text{ x} 10^{-2}$	kg∙m²
$I_2 = 0.4 \ x \ \frac{(0.06/2)^2}{2} + 0.4 \ x \ 0.2^2 = 1.62 \ x \ 10^{-2}$	kg∙m²
$I_3 = 0.2 \ x \ \frac{0.06^2 + 0.03^2}{12} + 0.2 \ x \ 0.2^2 = 0.81 \ x \ 10^{-2}$	kg∙m²
I = (0.67 + 1.62 + 0.81) x 10^{-2} = 3.1 x 10^{-2}	kg∙m²

Calculation Example

$d_1 = 0.1 \text{ m}, d_2 = 0.05 \text{ m}, D = 0.04 \text{ m}, a = 0.04 \text{ m}, b = 0.02 \text{ m}$
$m_1 = 1 \text{ kg}, m_2 = 0.4 \text{ kg}, m_3 = 0.5 \text{ kg}, m_4 = 0.2 \text{ kg}, \text{ Ratio of the number of teeth} = 2$

$I_1 = 1 - x \frac{(0.1/2)^2}{2}$	= 1.25 x 10 ⁻³ kg⋅m ²
$I_2 = 0.4 \text{ x} \frac{(0.05/2)^2}{2}$	= 0.13 x 10 ⁻³ kg⋅m ²
$I_3 = 0.5 \text{ x} \frac{(0.04/2)^2}{2}$	$= 0.1 \text{ x } 10^{-3} \text{ kg} \cdot \text{m}^2$
$I_4 = 0.2 \text{ x} \frac{0.04^2 + 0.02^2}{12}$	= 0.03 x 10 ⁻³ kg·m ²
$I_B = (0.13 + 0.1 + 0.03)$	x 10 ⁻³ = 0.26 x 10 ⁻³ kg⋅m ²
$I_A = 2^2 x \ 0.26$	x 10 ⁻³ = 1.04 x 10 ⁻³ kg⋅m ²
I = (1.25+1.04)	$x \ 10^{-3} = 2.29 \ x \ 10^{-3} \ \text{kg} \cdot \text{m}^2$

Rotary Actuator Model Selection

Graph for Calculating the Moment of Inertia

(Note: If "a" is divided into "a1a2", the moment of inertia can be found by calculating them separately.)

2. How to read the graph: When the dimension of the load contains both "a" and "b"

[Example] When the load shape is (5), a = 200 mm, b = 200 mm, and the load mass is 0.5 kg

SMC

In graph 1, find the point at which the vertical line of a = 200 mm and the line of the load shape (5) intersect. Move this intersection point to graph 2, and the point at which it intersects with the curve of b = 200 mm indicates that the moment of inertia of the 1 kg mass is 5.5×10^{-3} kg·m².

Since the load mass is 0.5 kg, the actual moment of inertia is 5.5 x 10⁻³ x 0.5 = 2.75 x 10⁻³ kg m²

2 Calculation of Required Torque

Load Type

The calculation method of required torque varies depending on the load type. Find the required torque referring to the table below.

Effective Torque

									[IN•m]
Size				Operatin	g pressu	ire [MPa]			
Size	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
10	0.03	0.06	0.09	0.12	0.15	0.18	_	—	_
15	0.10	0.17	0.24	0.32	0.39	0.46	—	—	—
20	0.23	0.39	0.54	0.70	0.84	0.99	_	—	_
30	0.62	1.04	1.39	1.83	2.19	2.58	3.03	3.40	3.73
40	1.21	2.07	2.90	3.73	4.55	5.38	6.20	7.03	7.86

3 Confirmation of Rotation Time

Rotation time adjustment range is specified for each product for stable operation. Set the rotation time within the rotation time specified below.

		Rotation time adjustment range [^S /90°]															
Model	0.02	0.03	0.05	0.1	0.2	0.3	0	.5	1		2	3	4	5	10	20	30
			_	Size: 10, 1	5, 20												
CRB				Size	: 30												
		i			Size: 40						i	i		i			i

If the product is used in a low speed range which is outside the adjustment range, it may cause the stick-slip phenomenon, or the product to stick or stop.

-

Rotary Actuator Model Selection

4 Calculation of Kinetic Energy

Kinetic energy is generated when the load rotates. Kinetic energy applies on the product at the operating end as inertial force, and may cause the product to damage. In order to avoid this, the value of allowable kinetic energy is determined for each product. Find the kinetic energy of the load, and verify that it is within the allowable range for the product in use.

Kinetic Energy

Use the following formula to calculate the kinetic energy of the load.

$$\mathbf{E} = \frac{1}{2} \cdot \mathbf{I} \cdot \boldsymbol{\omega}^2$$

E: Kinetic energy [J]

I: Moment of inertia [kg·m²]

ω: Angular velocity [rad/s]

Angular Velocity

$$\omega = \frac{2\theta}{t}$$

 ω : Angular velocity [rad/s] θ : Rotating angle [rad]

t : Rotation time [s]

⇒Below Allowable kinetic energy and rotation time adjustment range

 \Rightarrow p. 12 Moment of inertia and rotation time

To find the rotation time when kinetic energy is within the allowable range for the product, use the following formula.

When the angular velocity is $\omega = \frac{2\theta}{*}$

$$\mathbf{t} \ge \sqrt{\frac{2 \cdot \mathbf{I} \cdot \mathbf{\theta}^2}{\mathbf{E}}}$$

t : Rotation time [s]

- I : Moment of inertia [kg·m²]
- θ: Rotating angle [rad]

E: Allowable kinetic energy [J]

Allowable Kinetic Energy and Rotation Time Adjustment Range

Allowable Kinetic Energy and Rotation Time Adjustment Range

Size	Allowable kinetic energy [J]	Adjustable range of rotation time safe in operation [S/90°]
10	0.00015	
15	0.001	0.03 to 0.5
20	0.003	
30	0.020	0.04 to 0.5
40	0.040	0.07 to 0.5

Calculation Example

Calculation Example

operation is 0.5 s. Thus, the rotation time should be within the range of $0.30 \le t \le 0.50$.

SMC

Moment of Inertia and Rotation Time

How to read the graph

Example 1) When there are constraints on the moment of inertia of the load and the rotation time: We can see from graph 3 that to operate the load at a 1 x 10⁻⁴ kg·m² moment of inertia and at the rotation time setting of 0.3 ^S/_{90°}, the model will be CRB⊡30.
Example 2) When there are constraints on the moment of inertia of the load but not the rotation time: We can see from graph 3 that to operate the load at a 1 x 10⁻⁵ kg·m² moment of inertia:

CRB15 will be 0.22 to 0.5 ^S/90°. CRB20 will be 0.13 to 0.5 ^S/90°.

[Remarks] As for the rotation times in graph 3, the lines in the graph indicate the adjustable speed ranges. However, if the speed is adjusted toward the low-speed end beyond the range of the line, the actuator may stick, or, in the case of the vane type, the operation may stop.

Graph 3 Size: 10 to 40

5 Confirmation of Allowable Load

Provided that a dynamic load is not generated, a load in the axial direction can be applied up to the value that is indicated in the table below. However, applications in which the load is applied directly to the shaft should be avoided as much as possible.

Vane Type (Single)

Series	Size	Load direction					
Selles		Fsa [N]	Fsb [N]	Fr [N]	M [N⋅m]		
	10	9.8	9.8	14.7	0.13		
	15	9.8	9.8	14.7	0.17		
CRB	20	19.6	19.6	24.5	0.33		
	30	24.5	24.5	29.4	0.42		
	40	40	40	60	1.02		

6 Calculation of Air Consumption and Required Air Flow Capacity

Air consumption is the volume of air which is expended by the rotary actuator's reciprocal operation inside the actuator and in the piping between the actuator and the switching valve, etc. This is necessary for selection of a compressor and for calculation of its running cost. Required air volume is the air volume necessary to make a rotary actuator operate at a required speed. It requires calculation when selecting the upstream piping diameter from the switching valve and air line equipment.

* To facilitate your calculation, the table below provide the air consumption volume (QCR) that is required each time an individual rotary actuator makes a reciprocal movement.

1Air consumption volume

Formula

Re	Regarding QCR: With vane type, use formula (1) because the inner vol- ume varies when ports A and B are pressurized.							
	$Q_{CR} = (V_A + V_B) \times \left(\frac{P + 0.1}{0.1}\right) \times 10^{-3} \cdots$	···(1)						
	$Q_{CP=2 x a x L x} \left(-\frac{P}{0.1} \right) x 10^{-6}$	(2)						
	Qc = Qcr + Qcp	(3)						
QCR	a = Amount of air consumption of rotary actuator	[L (ANR)]						
QCP	$\mathbf{P} = Amount$ of air consumption of tube or piping	[L (ANR)]						
VA	= Inner volume of the rotary actuator (when pressurized from A po	rt) [cm ³]						
٧в	= Inner volume of the rotary actuator (when pressurized from B po	rt) [cm ³]						
Ρ	= Operating pressure	[MPa]						
L	= Length of piping	[mm]						
а	= Inner sectional area of piping	[mm ²]						
Qc	= Amount of air consumption required for one cycle of the rotary actuator	[L (ANR)]						

To select a compressor, it is important to select one that has plenty of margin to accommodate the total air volume that is consumed by the pneumatic actuators that are located downstream. The total air consumption volume is affected by the leakage in the tube, the consumption in the drain valves and pilot valves, as well as by the reduction in air volume due to reduced temperature.

Formula

$Q_{c2} = Q_c \times n \times N_0$	of actuators x Safety	(4) factor
$Q_{UZ} = Q_{U} \wedge \Pi \wedge \Pi 0$		y idoloi (\pm)

 \mathbf{Qc}_2 = Amount of air from a compressor

n = Actuator reciprocations per minute

Safety factor: From 1.5

2 Required air flow capacity

Formula

$\mathbf{Q}_{r} = \left\{ \mathbf{V}_{\mathbf{B}} \mathbf{x} \left(\frac{\mathbf{P} + 0.1}{0.1} \right) \mathbf{x} \ 10^{-3} + \mathbf{a} \mathbf{x} \mathbf{L} \mathbf{x} \left(\frac{\mathbf{P}}{0.1} \right) \mathbf{x} \ 10^{-6} \right\} \mathbf{x} \frac{60}{t} \cdots$	· (5)
$\mathbf{Q}_{\mathbf{r}} = \left\{ \mathbf{V}_{\mathbf{A}} \times \left(\frac{\mathbf{P} + 0.1}{0.1} \right) \times 10^{3} + \mathbf{a} \times \mathbf{L} \times \left(\frac{\mathbf{P}}{0.1} \right) \times 10^{-6} \right\} \times \frac{60}{t} \cdots$	· (6)
Q _r = Consumed air volume for rotary actuator [l/min	(ANR)]
$V_{\text{A}}\!=\!$ Inner volume of the rotary actuator (when pressurized from A port)	[cm³]
VB = Inner volume of the rotary actuator (when pressurized from B port)	[cm³]

Ρ	= Operating pressure	[MPa]
L	= Length of piping	[mm]
а	= Inner sectional area of piping	[mm²]
t	= Total time for rotation	[S]

Internal Cross Section of Tubing and Steel Tube

Nominal	O.D. [mm]	I.D. [mm]	Internal cross section a [mm ²]
T□ 0425	4	2.5	4.9
T□ 0604	6	4	12.6
TU 0805	8	5	19.6
T 0806	8	6	28.3
1/8B	_	6.5	33.2
T🗆 1075	10	7.5	44.2
TU 1208	12	8	50.3
T🗆 1209	12	9	63.6
1/4B	—	9.2	66.5
TS 1612	16	12	113
3/8B	—	12.7	127
T🗆 1613	16	13	133
1/2B	_	16.1	204
3/4B	_	21.6	366
1B	_	27.6	598

 \Rightarrow p. 14 Air consumption calculation graph

Inner Volume and Air Consumption

												[L (ANR)]		
Size	Rotating angle	Inner volu	ume [cm ³]	Operating pressure [MPa]										
Size	(degree)	Press. VA port	Press. VB port	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0		
10	90	0.5	0.8	0.004	0.005	0.007	0.008	0.009	0.010	—	—	—		
10	180	1.1	1.1	0.007	0.009	0.011	0.013	0.015	0.018		—			
15	90	1.4	2.1	0.011	0.014	0.018	0.021	0.025	0.028	—	—	—		
15	180	2.8	2.8	0.017	0.022	0.028	0.034	0.039	0.045		—			
	90	3.6	5	0.026	0.034	0.043	0.052	0.060	0.069	—	—	—		
20	180	6.5	6.5	0.039	0.052	0.065	0.078	0.091	0.104		—			
	270	7.9	7.9	0.047	0.063	0.079	0.095	0.111	0.126	—	—	—		
	90	10.1	13.3	0.070	0.094	0.117	0.140	0.164	0.187	0.211	0.234	0.257		
30	180	17.4	17.4	0.104	0.139	0.174	0.209	0.244	0.278	0.313	0.348	0.383		
	270	19	19	0.114	0.152	0.190	0.228	0.266	0.304	0.342	0.380	0.418		
40	90	21.9	30	0.156	0.208	0.260	0.311	0.363	0.415	0.467	0.519	0.571		
40	180	37.5	37.5	0.225	0.300	0.375	0.450	0.525	0.600	0.675	0.750	0.825		

[l/min (ANR)]

Air Consumption Calculation Graph

 Step 1
 Using graph 4, air consumption volume of the rotary actuator is found.

 From the point of intersection between the inner volume and the operating pressure (slanted line) and then looking to the side (left side) direction, the air consumption volume for 1 cycle operation of a rotary actuator is found.

Step 2 Using graph 5 , air consumption volume of tubing or steel tube is found.

- (1) First determine the point of intersection between the operating pressure (slanted line) and the piping length, and then go up the vertical line perpendicularly from there.
- (2) From the point of intersection of an operating piping tube inside diameter (slanted line), then look to the side (left or right) to find the required air consumption volume for piping.

Step 3 Total air consumption volume per minute is found as follows: (Air consumption volume of a rotary actuator [unit: L (ANR)] + Tubing or steel tube's air consumption volume) x Cycle times per minute x Number of rotary actuators = Total air consumption volume

Example) When 10 units of a CRBS30-180 are used at a pressure of 0.5 MPa, what is the air consumption of their 5 cycles per minute? (Piping between the actuator and switching valve is a tube with an inside diameter of 6 mm and length of 2 m.)

- 1. Operating pressure 0.5 MPa \rightarrow Inner volume of CRBS30-180 34.8 cm³ \rightarrow Air consumption volume 0.21 L (ANR)
- Operating pressure 0.5 MPa→ Piping length 2 m → Inside diameter 6 mm → Air consumption volume 0.56 L (ANR)

3. Total air consumption volume = $(0.21 + 0.56) \times 5 \times 10 = 38.5$ l/min (ANR)

Graph 4 Air Consumption

Inner Volume			1 cycle [cm ³]
Size		Rotating angle	
Size	90°	180°	270°
10	1.3	2.2	
15	3.5	5.6	
20	8.6	13	15.8
30	23.4	34.8	38
40	51.9	75	

Graph 5 Air Consumption of Tubing, Steel Tube (1 cycle)

^e "Piping length" indicates the length of steel tube or tubing which connects rotary actuator and switching valves (solenoid valves, etc.).

 Refer to page 13 for the size of tubing and steel tube (inside diameter and outside diameter).

Vane Type Rotary Actuator **CRB Series** Size: 10, 15, 20, 30, 40

4 Auto switch

15

Without auto switch (Built-in magnet)

For applicable auto switches, refer to the table below.

Shaft type

Sumbol	Shaft type	Shaft-end shape						
Symbol	Shall type	Long shaft	Short shaft					
S	Single shaft*1	Single flat*2	_					
W	Double shaft	Single flat*2	Single flat					
J *3	Double shaft							
K *3	Double shaft	For de	etails,					
T *3	Single shaft*1	refer to page 26.						
Y *3	Double shaft							

*1 When an auto switch is mounted to the rotary actuator, only options "S" and "T" are available.
*2 Size 40 has a parallel key instead of a chamfered

Solution of the particle of the particular of a sharmore portion.
 Options "J," "K," "T," and "Y" are produced upon

*3 Options "J," "K," "T," and "Y" are produced upon receipt of order.

5 Lead wire length

—	Grommet/Lead wire: 0.5 m
М	Grommet/Lead wire: 1 m
L	Grommet/Lead wire: 3 m
Z *1	Grommet/Lead wire: 5 m

*1 The 5 m lead wire is produced upon receipt of order.

2 Siz	е
10	
15	
20	
30	
40	

3 Rotating angle

RoHS

90 90°	
180 180°	
270 270°	

 For models with an auto switch, only 90° or 180° can be selected.

	mber of auto itches
	2
•	4

Refer to pages 43 to 46 for actuators with auto switches.

- · Auto Switch Proper Mounting Position (at Rotation End Detection)
- · Operating Angle and Hysteresis Angle
- · Operating Range and Hysteresis
- · How to Change the Auto Switch Detecting Position
- Auto Switch Mounting
- · Auto Switch Adjustment

A flange mounting bracket assembly is available as an option. For details, refer to page 41.

Applicable Auto Switches/Refer to the Web Catalogue for further information on auto switches.

	Fleetricel	light	M/inim m	Load voltage				Lead wire length [m]				Pre-wired		
Туре	Electrical entry	Indicator I	Wiring (Output)	LOa	[DC]	Auto switch model	Lead wire type	0.5 (—)	1 (M)	3 (L)	5 (Z)	connector	Applicable load	
			3-wire (NPN)		5 V. 12 V	M9N	Oilproof				0	0	IC	
Solid state auto switch	Grommet	Yes	3-wire (PNP)	24 V	5 V, 1∠ V	M9P	heavy-duty				0	0	circuit	Relay, PLC
auto switch			2-wire		12 V	M9B	cord				0	0	_	1 20

* Auto switches are shipped together with the product but do not come assembled.

* Auto switches marked with a "O" are produced upon receipt of order.

	a :									
	Size	10	15	20	30	40				
Rotating	g angle range	90° ^{+5°} 180° ^{+5°}	90° ^{+4°} 180° ^{+4°} ₀	90° 180° 270	90°±10° 180°±10°					
Fluid			Air (Non-lube)							
Proof p	ressure [MPa]		1.05	1.5						
Ambient a	and fluid temperatures	5 to 60 °C								
Max. ope	rating pressure [MPa]	0.7 1.0								
Min. oper	ating pressure [MPa]	0.2								
Rotation time	e adjustment range [\$/90°]*1		0.03 to 0.5	0.04 to 0.5	0.07 to 0.5					
Allowabl	e kinetic energy [J]	0.00015	0.001	0.003	0.02	0.04				
Shaft load	Allowable radial load	15	15	25	30	60				
[N]	Allowable thrust load	10	10	20	25	40				
Port siz	e	M5 x 0.8								

*1 Operate within the specified rotation time range. Operation below 0.5 s/90° may cause stick slip or operation failure.

It is difficult to make adjustments during use if rotation time is changed to 0.5 s/90° or lower. Size 10 requires at least 0.35 MPa of operating pressure to reach the minimum rotation time (0.03 s/90°).

Chamfered Portion and Rotation Range: Top View from Long Shaft Side The positions of the chamfered portion shown below illustrate the conditions of actuators when B port is pressurized.

• Operate within the adjustment range shown below.

*1 For size 10, the tolerance of rotating angle of 90° and 180° will be $^{+5^{\circ}}_{0}$.

*2 For size 40 actuators, a parallel key will be used instead of a chamfer.

* The angle adjusting screw (adjustment bolt) is set at random within the adjustable rotating range. Therefore, it must be readjusted to obtain the angle that suits your application. (Refer to page 48.)

The position of the chamfered portion when A port is pressurized (when shipped from the factory) Size: 10, 15, 20, 30, 40

st Recommended tightening torque for hexagon nut to fix the adjustment bolt Size 20: 1.5 N·m Sizes 30, 40: 3 N·m

Chamfer

16

CRB Series

Inner Volume

												[cm ³]
Size	Size 10		15		20			30			40	
Rotating angle	90°	180°	90°	180°	90°	180°	270°	90°	180°	270°	90°	180°
Inner volume	0.8 (0.5)	1.1	2.1 (1.4)	2.8	5 (3.6)	6.5	7.9	13.3 (10.1)	17.4	19	30 (21.9)	37.5

* Values inside () are inner volume of the supply side when A port is pressurized.

Weight

Size	10		10		10 1		15 20				30	[g]	
Rotating angle	90°	180°	90°	180°	90°	180°	270°	90°	180°	270°	90°	180°	
Basic type (S shaft)	26 (27)	25 (26)	46 (47)	45 (46)	107 (110)	105 (107)	103 (106)	198 (203)	192 (197)	190 (195)	366 (378)	354 (360)	
With auto switch	39	38	62	61	115	112	_	216	209	_	380	367	

(): For W shaft

. .

Effective Output

Construction: Standard Type (Without Auto Switch)

• Following figures show actuators when B port is pressurized.

Size: 20, 30, 40

Component Parts

	-p		
No.	Description	Material	Note
1	Body (A)	Aluminum alloy	Painted
2	Body (B)	Aluminum alloy	Painted
3	Vane shaft	Stainless steel	
4	Stopper	Resin	
5	Stopper for 90°	Resin	For 90°
6	Holding rubber	NBR	For 90°
7	Stopper seal	NBR	Special seal
8	Back-up ring	Stainless steel	
9	Bearing	Bearing steel	
10	O-ring	NBR	
11	Hexagon socket head cap screw	Chrome molybdenum steel	Special screw

Component Parts

No.	Description	Material	Note
INO.	Description		
1	Body (A)	Aluminum alloy	Painted
2	Body (B)	Aluminum alloy	Painted
3	Vane shaft	Stainless steel*1	
4	Stopper	Resin	
5	Stopper for 90°	Resin	For 90°
6	Holding rubber	NBR	For 90°
7	Stopper seal	NBR	Special seal
8	Back-up ring	Stainless steel	
9	Bearing	Bearing steel	
10	O-ring	NBR	
11	Seal washer	NBR	
12	Adjustment bolt	Chrome molybdenum steel	
13	Hexagon nut	Steel wire	
14	Hexagon socket head cap screw	Chrome molybdenum steel	Special screw

*1 The material is chrome molybdenum steel for sizes 30 and 40.

SMC

CRB Series

Construction: Standard Type (Without Auto Switch)

• Following figures show the position of the ports during rotation.

Size: 20, 30

Component Parts

	-		
No.	Description	Material	Note
1	Body (A)	Aluminum alloy	Painted
2	Body (B)	Aluminum alloy	Painted
3	Vane shaft	Stainless steel*1	
4	Stopper	Resin	
5	Stopper seal	NBR	Special seal
6	Stopper pin	Bearing steel	
7	Back-up ring	Stainless steel	
8	Bearing	Bearing steel	
9	O-ring	NBR	
10	Hexagon socket head cap screw	Chrome molybdenum steel	Special screw

*1 The material is chrome molybdenum steel for size 30.

Construction: Standard Type (With Auto Switch)

• Following figures show actuators when B port is pressurized.

Size: 10, 15

Size: 20, 30, 40

Component Parts

No.	Description	Material
1	Cover	Resin
2	Magnet holder	Resin
3	Magnet	Magnetic material
4	Body C	Resin
5	Switch plate	Aluminum alloy
6	Spring pin	Stainless steel
7	Cross recessed round head screw	Chrome molybdenum steel*1
8	Cross recessed round head screw	Chrome molybdenum steel

*1 The material is stainless steel for sizes 10 and 15.

SMC

CRB Series

Dimensions: Standard Type (Without Auto Switch) 10, 15

Single shaft: CRBS (For 90° and 180°)

• Following figures show actuators when B port is pressurized.

(3 mounting holes with the \bigstar marks are for tightening the actuator and not to be used for external mounting for size 10.

																	[mm]	
Size		Α		в	D							E			F			
Size	A1	A2	A3	D	D1 (g7)	D2	D3	D4	D5	D6	E1 (h9)	E2	E3	F1	F2	F3	K	
10	29	30	37	15	4 ^{-0.004} -0.015	14	0.5	9	8	5	9 _{-0.036}	3	1	12	9.8	M5 x 0.8	3.6	
15	34	39.5	47	20	5 ^{-0.004} -0.016	18	0.5	10	9	6	12_0.043	4	1.5	14	14.3	M5 x 0.8	7.6	
						Q												
Size	L	M	P		♦ Q1	♦ Q2		Q3										
					V Q1	V QZ	×	Q3										
10	19.8	14.6	24	M3 :	x 0.5 depth 6	6												
15	24	17.1	29	M3 x	0.5 depth 10	6	M3 x 0.	5 depth	n 5									
21									SM	С								

Dimensions: Standard Type (Without Auto Switch) 20, 30, 40

Single shaft: CRBS (For 90° and 180°)

• Following figures show actuators when B port is pressurized.

Parallel key dimensions

b (h9)	h (h9)	L1
4 _{-0.030}	4_0.030	20

																[mm]
Cine		Α		в			D				E			F		
Size	A1	A2	A3	D	D1 (g7)	D2	2 D3	D4	D5	D6	E1 (h9)	E2	E3	F1	F2	F3
20	42	50.5	59	29	6 ^{-0.004}	20	0.5	10	10	7	14 ⁰ _{-0.043}	4.5	1.5	13	18.3	M5 x 0.8
30	50	64	75	40	8 ^{-0.005} -0.020	22	! 1	12	13	8	16 ⁰ _{-0.043}	5	2	14	26	M5 x 0.8
40	63	79.5	90	45	$10^{-0.005}_{-0.020}$	30) 1	—	15	9	25 _{-0.052}	6.5	4.5	20	31.1	M5 x 0.8
Size		J		K		Р			Q			1				
Size	J1	J2	J3	- K	L	٢	•	Q1	♦ Q	2	★Q3					
20	16	7.1	27.4	-	28	36	M4 x 0.7	depth 10) 11	M4	x 0.7 depth 7.5	5				
30	19	11.8	32.7	5.5	31.5	43	M5 x 0.8	depth 15	5 16.	5 M5	x 0.8 depth 10	1				

*1 J3-dimension is not the dimension at the time of shipment, since its dimension is for adjustment parts.

56

40

40

28

15.8

44.1

9.5

17.5

M5 x 0.8 depth 10

M5 x 0.8 depth 20

CRB Series

Dimensions: Standard Type (Without Auto Switch) 20, 30

Single shaft: CRBS (For 270°)

 \bullet Following figures show the position of the ports during rotation.

																[mm]	
Size		Α		Б					D					F			
Size	A1	A2	A3	В	D1 (g7)	D2	D3	D4	D5	D6	E1 (h9)	E2	E3	F1	F2	F3	
20	42	50.5	59	29	6 ^{-0.004} -0.016	20	0.5	10	10	7	14 _{-0.043}	4.5	1.5	13	18.3	M5 x 0.8	
30	50	64	75	40	8 ^{-0.005} -0.020	22	1	12	13	8	16 _{-0.043}	5	2	14	26	M5 x 0.8	
0.							Q										
Size	K	L	M	P	♦Q	1	• Q2		★Q:	3							
20	10.5	28	21	36	M4 x 0.7 d	lepth 10	11	M4	x 0.7 de	pth 7.5	-						
30	14	31.5	25	43	M5 x 0.8 depth 15 16.5		M5	x 0.8 de	epth 10								
~~							•				-						

SMC

Dimensions: Standard Type (With Auto Switch) 10, 15

Single shaft: CDRBS (For 90° and 180°)

 \bullet Following figures show actuators when B port is pressurized.

(3 mounting holes with the \bigstar marks are for tightening the actuator and not to be used for external mounting for size 10.

																[mm]
Size	AB		Р		D			E	E		F				м	Р
Size	A1	A2	D	D1 (g7)	D2	D3	D4	E1 (h9)	E2	F1	F2	F3	K	L	IVI	F
10	29	46	32	4 ^{-0.004} -0.015	14	0.5	9	9_0.036	3	12	9.8	M5 x 0.8	3.6	19.8	14.6	24
15	34	54.8	36.8	5 ^{-0.004} -0.016	18	0.5	10	12_0_043	4	14	14.3	M5 x 0.8	7.6	24	17.1	29
			Q			S										
Size		♦ Q1		★Q2	S1	S2										
10	M3 x (0.5 depth (6	_	15	27										
15	M3 x 0	.5 depth 1	0 M3 x	0.5 depth 5	19	32.2										

CRB Series

Dimensions: Standard Type (With Auto Switch) 20, 30, 40

Single shaft: CDRBS (For 90° and 180°)

• Following figures show actuators when B port is pressurized.

For size 40

1.5

20

Parallel key dimensions

h(h9)

4_0.030

L1

20

L1

b(h9)

 $4_{-0.030}^{0}$

																	[mm]
Size		Α	В			D			E			F			J		к
Size	A1	A2	B	D1 (g7))2	D3	D4	E1 (h9)	E2	F1	F2	F3	J1	J2	J3	ĸ
20	42	55.6	35.6	6 ^{-0.004}	2	20	0.5	10	14 _{-0.043}	4.5	13	18.3	M5 x 0.8	16	7.1	27.4	—
30	50	70	48	8-0.005	2	22	1	12	16 ⁰ _{-0.043}	5	14	26	M5 x 0.8	19	11.8	32.7	5.5
40	63	84.2	54.2	10-0.005	3	30	_	-	25_0_0_2	6.5	20	31.1	M5 x 0.8	28	15.8	44.1	9.5
						S											
Size		P		Q	S1	5	62										
20	28	36	M4 x 0.7	depth 10	37	28	8.6										
30	31.5	43	M5 x 0.8	depth 15	42	4(0.1										
40	40	56	M5 x 0.8	depth 20	52	4	5.2										

SMC

*1 J3-dimension is not the dimension at the time of shipment, since its dimension is for adjustment parts.

(Refer to page 16 for

ØP

the rotation range.)

Shaft Type Dimensions (Dimensions other than specified below are the same as those of the standard type.)

Size: 10, 15 Standard type

With auto switch

Auto switch

Size: 20, 30, 40 Standard type

With auto switch

Single shaft: CDRBT

Double shaft: $CRBK\square$

Single shaft: CRB $T\Box$

Double shaft: CRBY \Box

		[mm]
Size	10	15
С	8	9
D	14	18

* The dimensions of the shaft and chamfer are the same as those of the standard type. Dimensions of parts different from the standard type conform to the general tolerance.

Double shaft: CRBK

Single shaft: CRBT \Box

Double shaft: $CRBY \square$

A parallel key is used instead of a chamfer for size 40.

			[mm]
Size	20	30	40
С	10	13	15
D	20	22	30

The dimensions of the shaft and chamfer (a parallel key for size 40) are the same as those of the standard type. Dimensions of parts different from the standard type conform to the general tolerance.

Vane Type Rotary Actuator With Vertical Auto Switch Unit **CRB** | -A Series Size: 10, 15, 20, 30, 40 RoHS

Auto switches are shipped together with the product but do not come assembled.

3-wire (PNP)

2-wire

2-wire

24 \

12 V

12 V

48 V, 100 V

100 V

100 V

24 V or less

Auto switches marked with a "O" are produced upon receipt of order.

Yes

No

Connector

Grommet

Connector

Grommet

Connector

Oilproof

heavy-duty

cord

T79

R73

R80

R80C

T79C

R73C

 \cap

circuit

_

IC circuit

Relay,

PLC

27

For

20.

30,

40

auto

switch

Reed

auto

switch

Vane Type Rotary Actuator With Vertical Auto Switch Unit **CRB** - **A** Series

Weight

			igint															
Specifications, rotation rai	nge inner												[g					
volume, and effective outp			Size	10		15		20		30		4	0					
same as those of the stand		Rota	ating angle	90° 18	0° 90°	180°	90°	180°	270°	90° 180°	° 270°	90°	180°					
	alu type.		c type	27 20	6 47	46	110	107	106	203 197	_		360					
(→ p. 16, 17)			ical auto switch unit	15		20		28		38	1.00	4						
.		, von			'	-•	1					1 1	-					
		A fla	inge mounting bracke	et assemb	y is ava	ilable a	s an o	ption.	For de	etails, refer t	o page	41.						
Construction, With	Vertical		witch I loit															
Construction: With	vertical A	auto S	witch Unit	• Co	mponents	other thar	n those s	pecified	l below a	re the same as	those of	the standa	ard type					
D-M9																		
Size: 10, 15 (1)		Size	: 20, 30 🚓 📖	11			Size: 40											
		_						-	- /		- N							
									- [!	TITI								
									11			١						
										9] (@@)	1¢	+						
16				su _S					ta		\$U	/						
			A Contraction of the second se	J.					Ø		Â							
									Ì		/							
			1															
										A T								
			<u>н</u>															
m]							
A port B p	ort																	
	\sim			M							S							
	3			<u> </u>							¥	-						
	-									0 6								
	\bigcirc				3)				-		1_							
	-9				9				┟╢┻┺	───┤└└		4						
	-(4)		10		9)					╓╖╔═┥┶╸┢╍	, ארוקווי	1						
	-Õ				Ň		┢╏╟═╤╾┯╌┎┙╟╽											
					4					¹⁵ total 15	abs 🖣							
T T	(14)				2)						Z₩							
ų ų			Ψ	₩~_(14)					Ψ	\$	(15)						
	B 66/66				<u> </u>					1								
D-S/T99(V) D-S7P	D-90/90A	1	T	Ť						Ť	Ŧ							
D-S9P(V) D-97/93A	D-R73/80																	
	D 11/0/00									-1-								
D-S/T79□			<u></u>	н							Ē.							
		0:					0:-		•		$ \rightarrow $							
Size: 10, 15		SIZE	e: 20, 30 🔎 🐨				5 12	2e: 4	0		(i)							
									- [i	SHITT								
												F						
											\mathbb{P}	/						
6 C)		E. Marine	- Alt							× 6							
$(6) \rightarrow (7)$	/			8					P		1							
			+	\bigcirc														
m											1							
				<u> </u>							· •	1						
				3							3							
				9)							<u></u>							
	(5)											1						
				2						Ø	9							
	-(12)				12)													
	-(13)																	
	\bigcirc							HIELIT	Ð									
Щ																		
·			∭ [′]							║								
			Ψ					ť										
Component Parts		Com			Com	npon	ent F	Parts										
No. Description	Material	No.	Description	M	aterial		No.		Descri	iption	Ν	/laterial						
1 Cover (A)	Resin		Switch block (B)	F	Resin		13			ound head screw	Stai	nless st	eel					
2 Cover (B)	Resin		Switch block		Resin		14			ound head screw		nless st						
3 Magnet lever	Resin		Magnet				15		per ca			NBR						
	Stainless steel		Hexagon socket set scre	w Stain	less ste	el	16		ch hol		Stai	nless st	eel					
	Aluminum allov		Cross recessed round head scre		less ste						ciul							

 $\ast~$ For size 10, there are 2 pcs. of (1) cross recessed round head screws.

Aluminum alloy

Resin

5 Holding block (B)

6 Switch block (A)

SMC

Stainless steel

Stainless steel

11 Cross recessed round head screw

12 Cross recessed round head screw

CRB - A Series

Dimensions: With Vertical Auto Switch Unit (10, 15)

CRBW-A (For 90° and 180°)

• Following figures show actuators when B port is pressurized.

*1 The angle is 60° when any of the following are used: D-90/90A/97/93A The angle is 69° when any of the following are used: D-S99(V)/T99(V)/S9P(V)

																	[mm]
Size		Α	в	с		D			E			F		V		м	Р
Size	A1	A2	P		D1 (g7)	D2	D3	D4	E1 (h9)	E2	F1	F2	F3	K	L	IVI	P
10	29	58	15	29	4 ^{-0.004} -0.015	14	0.5	9	9_0_0_0	3	12	9.8	M5 x 0.8	3.6	19.8	14.6	24
15	34	67	20	29	5 ^{-0.004} -0.016	18	0.5	10	12_0_043	4	14	14.3	M5 x 0.8	7.6	24	17.1	29
Size		Q		w	Y												
10	M3 x	0.5 dep	th 6	35	18.5												
15	M3 x	0.5 dep	th 5	35	18.5												
29								g	SMC								

Dimensions: With Vertical Auto Switch Unit (20, 30, 40)

CRBW-A (For 90° and 180°)

30

40

31.5

40

43

56

M5 x 0.8 depth 10

M5 x 0.8 depth 10

• Following figures show actuators when B port is pressurized.

Parallel key dimensions

b (h9)	h (h9)	L1
4_0_0_0	4_0.030	20

19.5

22.5

25

31

D3

																			[mm]
	Size		A	в	<u> </u>			D			E			F	-		J		K
	Size	A1	A2	P	С	D1	D1 (g7)		D3	D4	E1 (h9)	E2	F1	F2	F3	J1	J2	J3	К
	20	42	79	29	30	6_	0.004 0.016	20	0.5	10	14_0_043	4.5	13	18.3	M5 x 0.8	16	7.1	27.4	_
	30	50	93	40	31	8_	8-0.005		1	12	16 _{-0.043}	5	14	26	M5 x 0.8	19	11.8	32.7	5.5
	40	63	106	45	31	10	0.005 0.020	30	—	—	25_0_025_0	6.5	20	31.1	M5 x 0.8	28	15.8	44.1	9.5
_									-										
	Size	L	P		Q		W	Y											
	20	28	36	M4 x	0.7 de	pth 7	19.5	25	-										

CRB - A Series

Dimensions: With Vertical Auto Switch Unit (20, 30)

CRBW-A (For 270°)

• Following figures show the position of the ports during rotation.

													[mm]
Size	A	۱	в	с		D			E			F	
Size	A1	A2	D		D1 (g7)	D2	D3	D4	E1 (h9)	E2	F1	F2	F3
20	42	79	29	30	6 ^{-0.004} -0.016	20	0.5	10	14_0.043	4.5	13	18.3	M5 x 0.8
30	50	93	40	31	8-0.005	22	1	12	16 _{-0.043}	5	14	26	M5 x 0.8
Size	K	L	N	/) (3	W	ר ^י	(
20	10.5	28	2	1 3	6 M4 x 0.7	depth 7	19.	5 2	5				
30	14	31.	5 2	5 4	3 M5 x 0.8	depth 10) 19.	5 2	5				
31	⊘SMC												

Vane Type Rotary Actuator

With Angle Adjustment Unit/With Vertical Auto Switch Unit and Angle Adjustment Unit

CRB-**B/CRB**-**C** Series Size: 10, 15, 20, 30, 40

Refer to page 42 if either unit is needed separately.

Applicable Auto Switches/Refer to the Web Catalogue for further information on auto switches.

Appli-		Type Special Electrical function entry (Output)	14/1-1-1-1		Load vo	ltogo	Auto swite	ab model	Les el color	Le	ead w	ire ler	ngth [m]	Due universit	A			
cable	Туре			ator	0		LUau V	maye	Auto Switt	IIIIIouei	Lead wire	0.5	1	3	5	None	Pre-wired connector		cable ad
size		TUTICUOT	entry	Indic	(Output)		DC	AC	Perpendicular	In-line	type	(—)	(M)	(L)	(Z)	(N)	CONTRECTO	100	au
					3-wire (NPN)		5 V,		M9NV	M9N					0	—	0	IC	
	Solid				3-wire (PNP)		12 V		M9PV	M9P	Oilproof				0	—	0	circuit	
	state			Yes	2-wire		12 V		M9BV	M9B	heavy-duty				0	—	0	—	
For	auto	_		163	3-wire (NPN)		5 V,	_	S99V	S99	cord		—		0	—	0	IC	
10,	switch		Grommet		3-wire (PNP)	24 V	12 V		S9PV	S9P	0010		—		0	—	0	circuit	Relay,
15			aronnict		2-wire	2-7 V	12 V		T99V	T99			—		0	—	0	—	PLC
10	Reed			No				5 V, 12 V, 24 V	—	90	Vinyl parallel cord		—			—		IC	
	auto			140	2-wire		5 V, 12 V, 100 V	5 V, 12 V, 24 V, 100 V	—	90A	Oilproof heavy-duty cord		—			—	_	circuit	
	switch			Yes	-				—	97	Vinyl parallel cord		—			—			
	Switch			103				100 V	—	93A	Oilproof heavy-duty cord		—			—			
					3-wire (NPN)		5 V,		M9NV	M9N					0	—	0	IC	
	Solid				3-wire (PNP)		12 V		M9PV	M9P					0	—	0	circuit	
	state		Grommet		2-wire		12 V		M9BV	M9B					0	—	0	—	
For	auto	—	aronniet	Yes	3-wire (NPN)		5 V,	—	—	S79			—		0	—	0	IC	
20,	switch				3-wire (PNP)		12 V		—	S7P	Oilproof		—		0	—	0	circuit	Relay,
30,	Switch				2-wire	24 V	12 V		—	T79	heavy-duty		—		0	—	0		PLC
			Connector		2-0010		12 V		—	T79C	cord		—				—		1 20
40	Reed		Grommet	Yes				100 V	—	R73			—		0	—			
	auto		Connector	103	2-wire			—	—	R73C			—						
	switch		Grommet	No	2-00110		48 V, 100 V	100 V	—	R80			—		0	—		IC circuit	
	Switch		Connector	110			_	24 V or less	—	R80C			—					—	

* Auto switches are shipped together with the product but do not come assembled.

* Auto switches marked with a "O" are produced upon receipt of order.

CRB -B/CRB -C Series

Rotating Angle with Angle Adjustment Unit

• Drawings below are viewed from the long shaft side.

• The position of the chamfered portion illustrates the conditions of actuators when B port is pressurized.

Operate within the adjustment range.

For 90°

(2.5%)

Adjustment range: 0° to 85°

Rotating angle with angle adjustment unit

Size: 10, 15

Chamfer

A port

The shaded area shows the rotation adjustment range.

B port

Rotating Angle with Angle Adjustment Unit

Deteting angle (Padu)	Si	ze
Rotating angle (Body)	10	15
90°	0 to	85°
180°	0 to	175°

Size: 20, 30

For 90° For 180°

The shaded area shows the rotation adjustment range.

Size: 20, 30, 40

\square	Adjustment range	For 90°	For 180°
1	Angle adjustment unit	0° to 80°	0° to 170°
2	Adjustment bolt	90°±10° (One side ±5°)	180°±10° (One side ±5°)

Rotating Angle Adjustment Method

Fig. 1 Default position

- The rotating angle can be adjusted by moving the stopper blocks (A) and (B) shown in Fig. 1.
 - Fig. 1 shows the default position of the angle adjustment unit.
 - Fig. 1 shows size 20.
 - * Make adjustments when pressure is not being applied.

Weight

												[g]
Size	1	0	1	5		20			30		4	0
Rotating angle	90°	180°	90°	180°	90°	180°	270°	90°	180°	270°	90°	180°
Basic type	27	26	47	46	110	107	106	203	197	195	378	360
Vertical auto switch unit	1	15		20		28			38		4	.3
Angle adjustment unit	3	0	4	7		90			150		20	03

A flange mounting bracket assembly is available as an option. For details, refer to page 41.

Specifications, inner volume, and effective output are the same as those of the standard type. $(\rightarrow p. 16, 17)$

Construction: With Angle Adjustment Unit, With Vertical Auto Switch Unit and Angle Adjustment Unit

With vertical auto switch unit and angle adjustment unit

• Components other than those specified below are the same as those of the standard type.

With angle adjustment unit

Size: 10, 15, 20, 30, 40

Size: 10, 15

Size: 20, 30, 40

A parallel key is used instead of a chamfer for size 40.

Component Parts

00	ipolicilit i ulto		
No.	Description	Material	Note
1	Stopper ring	Aluminum alloy	
2	Stopper lever	Chrome molybdenum steel	
3	Lever retainer	Rolled steel	Zinc chromating
4	Rubber bumper	NBR	
5	Stopper block	Chrome molybdenum steel	Zinc chromating
6	Block retainer	Rolled steel	Zinc chromating
7	Сар	Resin	
8	Hexagon socket head cap screw	Stainless steel	Special screw
9	Hexagon socket head cap screw	Stainless steel	Special screw
10	Hexagon socket head cap screw	Stainless steel	Special screw
11	Joint		
12	Hexagon socket set screw	Stainless steel	Hexagon nut will be
12	Hexagon nut	Stainless steel	used for size 10 only.
13	Cross recessed round head screw	Stainless steel	
14	Magnet lever	—	

CRB - **B** Series

Dimensions: With Angle Adjustment Unit (10, 15)

CRBW-B (For 90° and 180°)

• Following figures show actuators when B port is pressurized.

<u>≍</u>‡≌

(3 mounting holes with the \bigstar marks are for tightening the actuator and not to be used for external mounting for size 10.

																	[mm]
Size		Α	D	C	;		D			E			F		V		B.A
Size	A1	A2	В	С	C1	D1 (g7)	D2	D3	D4	E1 (h9)	E2	F1	F2	F3	n	L	М
10	29	48.5	15	19.5	3	4 ^{-0.004} -0.015	14	0.5	9	9_0.036	3	12	9.8	M5 x 0.8	3.6	19.8	14.6
15	34	59	20	21	3	5 ^{-0.004} -0.016	18	0.5	10	12_0.043	4	14	14.3	M5 x 0.8	7.6	24	17.1
Size	Р		Q														
10	24	M3 x 0.	5 depth	n 6													
15	29	M3 x 0.	5 depth	า 5													

SMC

Dimensions: With Angle Adjustment Unit (20, 30, 40)

CRBW-B (For 90° and 180°)

• Following figures show actuators when B port is pressurized.

Parallel key dimensions

																	[mm]
Cizo		Α	в	C	;	D			E	F			J				
Size	A1	A2		С	C1	D1 (g7)	D2	D3	D4	E1 (h9)	E2	F1	F2	F3	J1	J2	J3
20	42	74	29	25	4	6 ^{-0.004} -0.016	20	0.5	10	14_0_043	4.5	13	18.3	M5 x 0.8	16	7.1	27.4
30	50	91	40	29	4.5	8 ^{-0.005} -0.020	22	1	12	16 _{-0.043}	5	14	26	M5 x 0.8	19	11.8	32.7
40	63	111.3	45	36.3	5	10 ^{-0.005} -0.020	30	—	—	25_0_0	6.5	20	31.1	M5 x 0.8	28	15.8	44.1
Size	к	L	Ρ		Q												
20	—	28	36	M4 x 0	.7 dept	h 7											
30	5.5	31.5	43	M5 x 0.	8 depth	10											
40	9.5	40	56	M5 x 0.	8 depth	10											

CRB - B Series

Dimensions: With Angle Adjustment Unit (20, 30)

CRBW-B (For 270°)

• Following figures show the position of the ports during rotation.

													[mm]
Α	L	в	С			D			E			F	
A1	A2	Б	С	C1	D1 (g7)	D2	D3	D4	E1 (h9)	E2	F1	F2	F3
42	74	29	25	4	6 ^{-0.004} -0.016	20	0.5	10	14 _{-0.043}	4.5	13	18.3	M5 x 0.8
50	91	40	29	4.5	8 ^{-0.005} -0.020	22	1	12	16 _{-0.043}	5	14	26	M5 x 0.8
К	L	М	P		Q								
10.5	28	21	36	M4 >	0.7 depth 7								
	-	-		-	-								
	A1 42	42 74 50 91 K L 10.5 28	A1 A2 B 42 74 29 50 91 40 K L M 10.5 28 21	A1 A2 B C 42 74 29 25 50 91 40 29 K L M P 10.5 28 21 36	A1 A2 B C C1 42 74 29 25 4 50 91 40 29 4.5 K L M P M4.5 10.5 28 21 36 M4.5	A1 A2 B C C1 D1(g7) 42 74 29 25 4 6 ^{-0.004} _{-0.016} 50 91 40 29 4.5 8 ^{-0.005} _{-0.020} K L M P Q 10.5 28 21 36 M4 x 0.7 depth 7	A1 A2 B C C1 D1(g7) D2 42 74 29 25 4 6 ^{-0.004} _{-0.016} 20 50 91 40 29 4.5 8 ^{-0.005} _{-0.020} 22 K L M P Q 10.5 28 21 36 M4 x 0.7 depth 7	A1 A2 B C C1 D1(g7) D2 D3 42 74 29 25 4 6 ^{-0.004} _{-0.016} 20 0.5 50 91 40 29 4.5 8 ^{-0.002} _{-0.020} 22 1 K L M P Q A B A	A1 A2 B C C1 D1(g7) D2 D3 D4 42 74 29 25 4 6 ^{-0.004} _{-0.016} 20 0.5 10 50 91 40 29 4.5 8 ^{-0.005} _{-0.020} 22 1 12 K L M P Q Q V V V V V 10.5 28 21 36 M4 x 0.7 depth 7 V <th>A1 A2 B C C1 D1(g7) D2 D3 D4 E1(h9) 42 74 29 25 4 $6^{-0.004}_{-0.016}$ 20 0.5 10 $14^{-0}_{-0.043}$ 50 91 40 29 4.5 $8^{-0.020}_{-0.020}$ 22 1 12 $16^{-0.043}_{-0.043}$ K L M P Q Q C M4 x 0.7 depth 7</th> <th>A1 A2 B C C1 D1(g7) D2 D3 D4 E1(h9) E2 42 74 29 25 4 6^{-0.004}_{-0.016} 20 0.5 10 14^{.0}_{-0.043} 4.5 50 91 40 29 4.5 8^{-0.005}_{-0.025} 22 1 12 16^{.0}_{-0.043} 5 K L M P Q Q V</th> <th>A1 A2 B C C1 D1(g7) D2 D3 D4 E1(h9) E2 F1 42 74 29 25 4 6^{-0.004}_{-0.016} 20 0.5 10 14^{-0.043}_{-0.043} 4.5 13 50 91 40 29 4.5 8^{-0.005}_{-0.020} 22 1 12 16⁰_{-0.043} 5 14 K L M P Q C C M4 × 0.7 depth 7 C</th> <th>A1 A2 B C C1 D1(g7) D2 D3 D4 E1(h9) E2 F1 F2 42 74 29 25 4 6^{-0.004}_{-0.016} 20 0.5 10 14^{-0.043}_{-0.043} 4.5 13 18.3 50 91 40 29 4.5 8^{-0.005}_{-0.020} 22 1 12 16^{-0.043}_{-0.043} 5 14 26 K L M P Q A A A A A A A A A A A A B C C C C A C A C <thc< th=""> <thc< th=""> <thc< th=""> <t< th=""></t<></thc<></thc<></thc<></th>	A1 A2 B C C1 D1(g7) D2 D3 D4 E1(h9) 42 74 29 25 4 $6^{-0.004}_{-0.016}$ 20 0.5 10 $14^{-0}_{-0.043}$ 50 91 40 29 4.5 $8^{-0.020}_{-0.020}$ 22 1 12 $16^{-0.043}_{-0.043}$ K L M P Q Q C M4 x 0.7 depth 7	A1 A2 B C C1 D1(g7) D2 D3 D4 E1(h9) E2 42 74 29 25 4 6 ^{-0.004} _{-0.016} 20 0.5 10 14 ^{.0} _{-0.043} 4.5 50 91 40 29 4.5 8 ^{-0.005} _{-0.025} 22 1 12 16 ^{.0} _{-0.043} 5 K L M P Q Q V	A1 A2 B C C1 D1(g7) D2 D3 D4 E1(h9) E2 F1 42 74 29 25 4 6 ^{-0.004} _{-0.016} 20 0.5 10 14 ^{-0.043} _{-0.043} 4.5 13 50 91 40 29 4.5 8 ^{-0.005} _{-0.020} 22 1 12 16 ⁰ _{-0.043} 5 14 K L M P Q C C M4 × 0.7 depth 7 C	A1 A2 B C C1 D1(g7) D2 D3 D4 E1(h9) E2 F1 F2 42 74 29 25 4 6 ^{-0.004} _{-0.016} 20 0.5 10 14 ^{-0.043} _{-0.043} 4.5 13 18.3 50 91 40 29 4.5 8 ^{-0.005} _{-0.020} 22 1 12 16 ^{-0.043} _{-0.043} 5 14 26 K L M P Q A A A A A A A A A A A A B C C C C A C A C <thc< th=""> <thc< th=""> <thc< th=""> <t< th=""></t<></thc<></thc<></thc<>

Dimensions: With Vertical Auto Switch Unit and Angle Adjustment Unit (10, 15)

CRBW-C (For 90° and 180°)

• Following figures show actuators when B port is pressurized.

*1 The angle is 60° when any of the following are used: D-90/90A/97/93A The angle is 69° when any of the following are used: D-S99(V)/T99(V)/S9P(V)

																[mm]
Size	1	Α	в	с						E F					к	
Size	A1	A2	Б	C	D1 (g7)		D2	D3	D4	E1 (h9)	E2	F1 F2		F3	ĸ	L
10	29	74.5	15	45.5	4_0	.004 .015	14	0.5	9	9_0.036	3	12	9.8	M5 x 0.8	3.6	19.8
15	34	85	20	47	5 ⁻⁰	.004 .016	18	0.5	10	12_0_0_12_0_0_12_0_0_0_0_0_0_0_0_0_0_0_0	4	14	14.3	M5 x 0.8	7.6	24
Size	М	Р		Q	W	Y										
10	14.6	24	M3 x 0	5 depth 6	35	18.5	-									
15	17.1	29	-	5 depth 5		18.5										
15	17.1	29	1010 x 0.	5 deptil 5	33	10.5										

CRB -C Series

Dimensions: With Vertical Auto Switch Unit and Angle Adjustment Unit (20, 30, 40)

CRBW-C (For 90° and 180°)

• Following figures show actuators when B port is pressurized.

Parallel key dimensions

L1	b	
b (h9)	h (h9)	L1
4_0_0_0	4_0_0_0	20

R

♦ 6 x Q
op O
A port B port

																						[mm]
Circ		Α	в	0		D			E			F	•		J		v		Р	0	14/	v
Size	A1	A2	D	С	D1 (g7)	D2	D3	D4	E1 (h9)	E2	F1	F2	F3	J1	J2	J3	n	K L		Q	W	T
20	42	100	29	51	6 ^{-0.004}	20	0.5	10	14_0 043	4.5	13	18.3	M5 x 0.8	16	7.1	27.4	—	28	36	M4 x 0.7 depth 7	19.5	25
30	50	117.5	40	55.5	8 ^{-0.005} -0.020	22	1	12	16 _{-0.043}	5	14	26	M5 x 0.8	19	11.8	32.7	5.5	31.5	43	M5 x 0.8 depth 10	19.5	25
40	63	137.2	45	62.2	10 ^{-0.005} -0.020	30	—	—	25_0 0_052	6.5	20	31.1	M5 x 0.8	28	15.8	44.1	9.5	40	56	M5 x 0.8 depth 10	22.5	31

SMC

Dimensions: With Vertical Auto Switch Unit and Angle Adjustment Unit (20, 30)

CRBW-C (For 270°)

• Following figures show the position of the ports during rotation.

													[mm]
Size		Α	в	С		D			E			F	
Size	A1	A2	D	C	D1 (g7)	D2	D3	D4	E1 (h9)	E2	F1	F2	F3
20	42	100	29	51	6-0.004	20	0.5	10	14_0_0_043	4.5	13	18.3	M5 x 0.8
30	50	117.5	40	55.5	8-0.005	22	1	12	16 _{-0.043}	5	14	26	M5 x 0.8
Size	K	L	M	Р	Q		W	Y					
20	10.5	28	21	36	M4 x 0.7 de	pth 7	19.5	25					
30	14	31.5	25	43	M5 x 0.8 dep	oth 10	19.5	25					
								S N	r				

CRB Series

Flange Dimensions/Part Nos.

Flange assembly for size 20 Part no.: P211060-2

M4 countersunk head screw (3 pcs.)

Flange assembly for size 30 Part no.: P211080-2

4x Ø5.5

6 x Countersunk head screw for M5 conical seat and through-hole

Weight [g]										
Size	10	15	20	30						
Flange assembly	9	10	19	25						

CRB Series Component Unit With Vertical Auto Switch Unit, Angle Adjustment Unit

With Vertical Auto Switch Unit and Angle Adjustment Unit

CRB Series Various units can be mounted to a vane type rotary actuator.

* The combination of the auto switch unit and angle adjustment unit is available as standard.

The items marked with ★ are additional parts required for connection (joint unit parts), and the items marked with \blacklozenge are unnecessary.

* Use a unit part number when ordering joint unit separately.

Part Number for Vertical Auto Switch Unit

	For D	-M9	Excluding D-M9						
Size	Vertical auto switch unit*1	Switch block unit	Vertical auto switch unit	Switch block unit*2					
	vertical auto switch unit	Common to right-hand and left-hand	vertical auto switch unit	Right-hand	Left-hand				
10	P611070-1M	P811010-8M	P611070-1	P611070-8	P611070-9				
15	P611090-1M	F811010-8W	P611090-1	F611070-8	F011070-9				
20	P611060-1M	P811030-8M	P611060-1	B611	060.8				
30	P611080-1M	F011030-8M	P611080-1	P611060-8					
40	P611010-1M	P811010-8M	P611010-1	P611010-8	P611010-9				

Part Number for Angle Adjustment Unit

		Vertical oute owitch unit	Angle edjuctment upit*1			
Size	Angle adjustment unit	Vertical auto switch unit,	Joint unit*3			
0120	Angle adjustment unit	For D-M9⊡	Excluding D-M9			
10	P811010-3	P811010-4M	P811010-4	P211070-10		
15	P811020-3	P811020-4M	P811020-4	P211090-10		
20	P811030-3	P811030-4M	P811030-4	P211060-10		
30	P811040-3	P811040-4M	P811040-4	P211080-10		
40	P811050-3	P811050-4M	P811050-4	P211010-10		

*1 An auto switch will not be included, please order it separately.

*2 Auto switch unit comes with one right-hand and one left-hand switch blocks that are used for addition or when the switch block is damaged.

Since the solid state auto switch for sizes 10 and 15 requires no switch block, the unit part number will be the P211070-13.

*3 The joint unit is necessary when adding an angle adjustment unit to a vertical auto switch unit, or when adding a vertical auto switch unit to an angle adjustment unit.

CRB Series Auto Switch Mounting

Auto Switch Proper Mounting Position (at Rotation End Detection)

CDRB20, 30

Size: 20, 30, 40

CDRB10, 15

Size: 10, 15

	[11111]	
	Solid state auto switch	
Size	D-M9	
	Α	-
10	6	
15	6	
20	6	
30	6	
40	6	

Since the figures in the table on the left are provided as a guideline only, they cannot be guaranteed. Adjust the auto switch after confirming the operating conditions in the actual setting.

Proper tightening torque: 0.05 to 0.15 [N·m]

Operating Range and Hysteresis

[mm]

* Operating range: θ m

The range is between the position where the auto switch turns ON as the magnet inside the auto switch unit moves rotationally and the position where the auto switch turns OFF as the magnet moves rotationally in the same direction.

* Hysteresis range: θ d

The range is between the position where the auto switch turns ON as the magnet inside the auto switch unit moves rotationally and the position where the auto switch turns OFF as the magnet moves rotationally in the opposite direction.

D-M9□

43

Size	θ m : Operating range	θ d: Hysteresis range
10, 15	170°	20°
20, 30	100°	15°
40	86°	10°

D-S/T99(V), S9P(V), S/T79□, S7P, D-97/93A, 90/90A, R73/80□

Size	θ m: Operating range	θ d: Hysteresis range
10, 15	110°	10°
20, 30	90°	
40	52°	8°

* Since the figures in the table above are provided as a guideline only, they cannot be guaranteed. Adjust the auto switch after confirming the operating conditions in the actual setting.

Operating Angle and Hysteresis Angle

	Solid state auto switch		
Size	D-M9		2
	Operating angle [0 m]	Hysteresis angle	
10	36°	5°	
15	36°	5°	
20	20°	5°	
30	20°	5°	
40	20°	5°	

Since the figures in the table on the left are provided as a guideline only, they cannot be guaranteed. Adjust the auto switch after confirming the operating conditions in the actual setting.

Proper tightening torque: 0.05 to 0.15 [N·m]

How to Change the Auto Switch Detecting Position

* When setting the detecting position, loosen the cross recessed round head screw a bit and move the auto switch to the preferred position and then tighten again and fix it. At this time, if tightened too much, screw can become damaged and unable to fix position.

Proper tightening torque: 0.4 to 0.6 [N·m]

When tightening the cross recessed round head screw, take care that the auto switch does not tilt.

D-S/T99(V), S9P(V), S/T79□, S7P, D-97/93A, 90/90A, R73/80□

Auto Switch Mounting: Sizes 10 to 40 (D-M9⁻)

3. Switch holder securing

After the actuated position has been adjusted with the cross recessed round head screw, use the auto switch.

* When tightening the screw, take care that the auto switch does not tilt.

3. Switch holder securing

After the actuated position has been adjusted with the cross recessed round head screw, use the auto switch.

* When tightening the screw, take care that the auto switch does not tilt.

CRB - A/C Series

Auto Switch Mounting: Sizes 10, 15 (D-S/T99(V), S9P(V), 97/93A, 90/90A)

External view and descriptions of auto switch unit

The following shows the external view and typical descriptions of the auto switch unit.

Solid state auto switch

<Applicable auto switch>

3-wire type.....D-S99(V), S9P(V) 2-wire type.....D-T99(V)

1. Switch block detaching

Remove the cross recessed round head screw (1) to detach the switch block.

2. Auto switch mounting

Secure the auto switch with the cross recessed round head screw (1) and holding block. Proper tightening torque: 0.4 to 0.6 [N·m]

 Since the holding block moves inside the groove, move it to the mounting position beforehand.
 After the actuated position has been adjusted with the cross recessed round head screw (1).

use the auto switch.

Reed auto switch

<Applicable auto switch> D-97/93A (With indicator light) D-90/90A (Without indicator light)

- 1. Preparations Loosen the cross recessed round
 - Loosen the cross recessed roun head screw (2) (About 2 to 3 turns).
 - * This screw has been secured temporarily at shipment.

- 2. Auto switch mounting
 - Insert the auto switch until it is in contact with the switch block hole.
 - For the D-97/93A, insert the auto switch in the direction shown in the figure on the right.
 Since the D-90/90A is a round
 - type, it has no directionality.

3. Auto switch securing

0.6 [N·m]

Tighten the cross recessed round head screw (2) to secure the auto switch. Proper tightening torque: 0.4 to

 After the actuated position has been adjusted with the cross recessed round head screw (1), use the auto switch.

Auto Switch Mounting: Sizes 20 to 40 (D-S/T79, S7P, R73/80)

External view and descriptions of auto switch unit

Mounting Procedure

<Applicable auto switch> Solid state auto switch D-S79, S7P D-T79, T79C

Reed auto switch D-R73, R73C D-R80, R80C

1. Auto switch mounting

Loosen the cross recessed round head screw (2), and insert the arm of the auto switch.

2. Auto switch securing Set the auto switch so that it is in contact

with the switch block, and tighten the cross recessed round head screw (2).

Proper tightening torque: 0.4 to 0.6 [N·m]

3. Switch holder securing

After the actuated position has been adjusted with the cross recessed round head screw (1), use the auto switch.

Auto Switch Adjustment

* Proper tightening torque: 0.4 to 0.6 [N·m]

Botation range of the output shaft with single flat (key for size 40 or

Rotation range of the output shaft with single flat (key for size 40 only) and auto switch mounting position <Applicable models/Size: 10, 15, 20, 30, 40>

* Solid-lined curves indicate the rotation range of the output shaft with single flat (key). When the single flat (key) is pointing to the END ① direction, the switch for rotation END ① will operate, and when the single flat (key) is pointing to the END ② direction, the switch for rotation END ② will operate.

* Broken-lined curves indicate the rotation range of the built-in magnet. Operating angle of the switch can be decreased by either moving the switch for rotation END ① clockwise or moving the switch for rotation END ② counterclockwise. Auto switch in the figures on the left is at the most sensitive position.

* Each auto switch unit comes with one right-hand and one left-hand switches.

Prior to Use Auto Switch Connections and Examples

Source Input Specifications

Sink Input Specifications

Connect according to the applicable PLC input specifications, as the connection method will vary depending on the PLC input specifications.

Examples of AND (Series) and OR (Parallel) Connections

When two auto switches are

connected in series, a load

may malfunction because

when in the ON state.

the load voltage will decline

The indicator lights will light

switches are in the ON state.

Auto switches with a load

voltage less than 20 V cannot

be used. Please contact SMC if using AND connection for a

heat-resistant solid state auto

switch or a trimmer switch.

up when both of the auto

* When using solid state auto switches, ensure the application is set up so the signals for the first 50 ms are invalid. Depending on the operating environment, the product may not operate properly.

3-wire AND connection for NPN output

3-wire AND connection for PNP output (Using relays)

2-wire AND connection

Example) Load voltage at ON Power supply voltage: 24 VDC Internal voltage drop: 4 V

Load voltage at ON = Power supply voltage – Internal voltage drop x 2 pcs. = 24 V – 4 V x 2 pcs. = 16 V

(Performed with auto switches only)

2-wire OR connection

SMC


```
(Solid state)
When two auto
switches are
connected in parallel,
malfunction may occur
because the load
voltage will increase
when in the OFF state.
```

(Reed)

Because there is no current leakage, the load voltage will not increase when turned OFF. However, depending on the number of auto switches in the ON state, the indicator lights may sometimes grow dim or not light up, due to the dispersion and reduction of the current flowing to the auto switches.

3-wire OR connection for NPN output

3-wire OR connection for PNP output

CRB Series Specific Product Precautions

Be sure to read this before handling the products. Refer to the back cover for safety instructions. For rotary actuator and auto switch precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website: https://www.smc.eu

Single flat

How to Mount Loads

How to connect a load directly to a single flat shaft

To secure the load, select a bolt of an appropriate size from those listed in tables 1 and 2 by taking the shaft's single flat bearing stress strength into consideration.

Table 1 Directly Fixed with Bolts (Refer to Fig. 1.)

Size	Shaft dia.	Bolt size	
10	4	M4 or larger	
15	5	M5 or larger	
20	6	IND OF larger	
30	8	8 M6 or larger	

Table 2 Fixed with a Holding Block (Refer to Fig. 2.)

		· · · J	
Size	Shaft dia.	Bolt size	Plate thickness (t)
10	4	M3 or larger	2 or wider
15	5		2.3 or wider
20	6	M4 or larger	3.6 or wider
30	8	M5 or larger	4 or wider

The plate thickness (t) in the table above indicates a reference value when a carbon steel is used. Besides, we do not manufacture a holding block.

Mounting

Refer to the table below when tightening the mounting bolts.

Mounting 1

Size	Bolt	Recommended tightening torque [N·m]	
10 M3		0.63	
15 M3		0.63	
20	M4	1.50	
30	M5	3.0	
40	M5	3.0	

* Refer to the Dimensions for Q1 and Q3 dimensions.

Mounting 2

Size	Bolt	Recommended tightening torque [N·m]	
10 M2.5		0.36	
15	M2.5	0.36	
20	M3	0.63	
30	M4	1.50	
40	M4	1.50	

* Refer to the Dimensions for Q1 and Q2 dimensions.

* Only for standard CRB without auto switch

Adjustment

2. Set the adjustment bolt A while supplying

SMC

Do not apply a load when adjusting the rotating angle.

Example) For 180 degrees

1. Set the adjustment bolt B while supplying pressure from the A port.

▲ Safety Instructions

These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of **"Caution," "Warning"** or **"Danger."** They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC) ¹, and other safety regulations.

▲ Caution:	Caution indicates a hazard with a low level of risk which, if not avoided, could result in minor or moderate injury.
▲ Warning:	Warning indicates a hazard with a medium level of risk which, if not avoided, could result in death or serious injury.
▲ Danger:	Danger indicates a hazard with a high level of risk which, if not avoided, will result in death or serious injury.

▲ Warning

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications. Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalogue information, with a view to giving due consideration to any possibility of equipment failure when configuring the equipment.

2. Only personnel with appropriate training should operate machinery and equipment.

The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced.

- 3. Do not service or attempt to remove product and machinery/ equipment until safety is confirmed.
 - 1. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed.
 - 2. When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully.
 - 3. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction.

4. Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following conditions.

- 1. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
- 2. Installation on equipment in conjunction with atomic energy, railways, air navigation, space, shipping, vehicles, military, medical treatment, combustion and recreation, or equipment in contact with food and beverages, emergency stop circuits, clutch and brake circuits in press applications, safety equipment or other applications unsuitable for the standard specifications described in the product catalogue.
- 3. An application which could have negative effects on people, property, or animals requiring special safety analysis.
- 4. Use in an interlock circuit, which requires the provision of double interlock for possible failure by using a mechanical protective function, and periodical checks to confirm proper operation.

▲ Caution

 The product is provided for use in manufacturing industries. The product herein described is basically provided for peaceful use in manufacturing industries.

If considering using the product in other industries, consult SMC beforehand and exchange specifications or a contract if necessary. If anything is unclear, contact your nearest sales branch.

1) ISO 4414: Pneumatic fluid power – General rules relating to systems. ISO 4413: Hydraulic fluid power – General rules relating to systems.

IEC 60204-1: Safety of machinery – Electrical equipment of machines. (Part 1: General requirements)

ISO 10218-1: Manipulating industrial robots - Safety. etc.

Limited warranty and Disclaimer/Compliance Requirements

The product used is subject to the following "Limited warranty and Disclaimer" and "Compliance Requirements".Read and accept them before using the product.

Limited warranty and Disclaimer

- 1. The warranty period of the product is 1 year in service or 1.5 years after the product is delivered, whichever is first.²⁾ Also, the product may have specified durability, running distance or replacement parts. Please consult your nearest sales branch.
- For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided. This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product.
- 3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalogue for the particular products.
- 2) Vacuum pads are excluded from this 1 year warranty. A vacuum pad is a consumable part, so it is warranted for a year after it is delivered. Also, even within the warranty period, the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty.

Compliance Requirements

- 1. The use of SMC products with production equipment for the manufacture of weapons of mass destruction (WMD) or any other weapon is strictly prohibited.
- 2. The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction. Prior to the shipment of a SMC product to another country, assure that all local rules governing that export are known and followed.

▲ Caution

SMC products are not intended for use as instruments for legal metrology.

Measurement instruments that SMC manufactures or sells have not been qualified by type approval tests relevant to the metrology (measurement) laws of each country.

Therefore, SMC products cannot be used for business or certification ordained by the metrology (measurement) laws of each country.

▲ Safety Instructions

Revision History

- A 270° rotating angle specification has been added. (Size: 20, 30) Edition B ZU - Number of pages has been increased from 48 to 52.

SMC Corporation (Europe)

Austria	+43 (0)2262622800
Belgium	+32 (0)33551464
Bulgaria	+359 (0)2807670
Croatia	+385 (0)13707288
Czech Republic	+420 541424611
Denmark	+45 70252900
Estonia	+372 6510370
Finland	+358 207513513
France	+33 (0)164761000
Germany	+49 (0)61034020
Greece	+30 210 2717265
Hungary	+36 23513000
Ireland	+353 (0)14039000
Italy	+39 03990691
Latvia	+371 67817700

0 www.smc.at office@smc.at www.smc.be www.smc.bg www.smc.hr www.smc.cz www.smcdk.com www.smcpneumatics.ee smc@info@smcee.ee www.smc.fi www.smc-france.fr www.smc.de www.smchellas.gr sales@smchellas.gr www.smc.hu www.smcitalia.it www.smc.lv

info@smc.be office@smc.bg office@smc.hr office@smc.cz smc@smcdk.com smcfi@smc.fi info@smc-france.fr info@smc.de office@smc.hu www.smcautomation.ie sales@smcautomation.ie mailbox@smcitalia.it info@smc.lv

Lithuania	+370 5 2308118	www.smclt.lt	info@smclt.lt
Netherlands	+31 (0)205318888	www.smc.nl	info@smc.nl
Norway	+47 67129020	www.smc-norge.no	post@smc-norge.no
Poland	+48 222119600	www.smc.pl	office@smc.pl
Portugal	+351 214724500	www.smc.eu	apoioclientept@smc.smces.es
Romania	+40 213205111	www.smcromania.ro	smcromania@smcromania.ro
Russia	+7 (812)3036600	www.smc.eu	sales@smcru.com
Slovakia	+421 (0)413213212	www.smc.sk	office@smc.sk
Slovenia	+386 (0)73885412	www.smc.si	office@smc.si
Spain	+34 945184100	www.smc.eu	post@smc.smces.es
Sweden	+46 (0)86031240	www.smc.nu	smc@smc.nu
Switzerland	+41 (0)523963131	www.smc.ch	info@smc.ch
Turkey	+90 212 489 0 440	www.smcpnomatik.com.tr	info@smcpnomatik.com.tr
UK	+44 (0)845 121 5122	www.smc.uk	sales@smc.uk

South Africa +27 10 900 1233 www.smcza.co.za zasales@smcza.co.za