# Smooth Cylinder <br> Double Acting, Single Rod Series CJ2Y Ø 10, Ø 16 

How to Order


Applicable Auto Switches/Refer to the Auto Switch Guide for further information on auto switches.

| Typ | Special function | Electrical entry |  | Wiring (Output) | Load voltage |  |  | Auto switch model |  |  |  | Lead wire length [m] |  |  |  |  | Pre-wired connector | Applicable load |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | DC |  | AC | Band mounting |  | Rail mounting |  | $\begin{aligned} & 0.5 \\ & (-) \end{aligned}$ | $\begin{gathered} 1 \\ {[\mathrm{~m}]} \\ \hline \end{gathered}$ | $\begin{gathered} 3 \\ (\mathrm{~L}) \end{gathered}$ | $\begin{gathered} 5 \\ (\mathrm{Z}) \\ \hline \end{gathered}$ | None <br> (N) |  |  |  |
|  |  |  |  |  |  |  | Perpendicular | In-line | Perpendicular | In-line |  |  |  |  |  |  |  |  |
|  |  |  |  | 3 -wire (NPN) |  | 5 V 12 V |  |  | M9NV | M9N | M9NV | M9N | $\bigcirc$ | $\bigcirc$ | $\bullet$ | $\bigcirc$ | - | $\bigcirc$ |  | Relay, PLC |
|  |  | Grommet |  | 3 -wire (PNP) |  | 5, ,12 V |  | M9PV | M9P | M9PV | M9P | $\bullet$ | - | - | $\bigcirc$ | - | $\bigcirc$ | 1 C circuit |  |
|  |  |  |  | 2-wire |  | 12 V |  | M9BV | M9B | M9BV | M9B | $\bullet$ | - | $\bullet$ | $\bigcirc$ | - | $\bigcirc$ |  |  |
|  |  | Connector |  | wire |  | 12 V |  | - | H7C | J79C | - | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | $\bullet$ | - |  |  |
|  |  |  |  | 3 -wire (NPN) |  |  |  | M9NWV | M9NW | M9NWV | M9NW | - | - | $\bullet$ | $\bigcirc$ | - | $\bigcirc$ |  |  |
|  | Diagnostic indication |  | Yes | 3 -wire (PNP) | 24 V | 5, 12 V | - | M9PWV | M9PW | M9PWV | M9PW | - | - | $\bullet$ | $\bigcirc$ | - | $\bigcirc$ | circuit |  |
|  |  |  |  | 2-wire |  | 12 V |  | M9BWV | M9BW | M9BWV | M9BW | - | - | $\bullet$ | $\bigcirc$ | - | $\bigcirc$ | - |  |
|  |  | Grommet |  | 3 -wire (NPN) |  | 5V12V |  | M9NAV** | M9NA** | M9NAV** | M9NA** | $\bigcirc$ | $\bigcirc$ | $\bullet$ | $\bigcirc$ | - | $\bigcirc$ | C circuit |  |
|  |  |  |  | 3 -wire (PNP) |  | 5, 12 V |  | M9PAV** | M9PA** | M9PAV** | M9PA** | $\bigcirc$ | $\bigcirc$ | - | $\bigcirc$ | - | $\bigcirc$ | 16 circuir |  |
|  |  |  |  | 2-wire |  | 12 V |  | M9BAV** | M9BA** | M9BAV** | M9BA** | $\bigcirc$ | $\bigcirc$ | $\bullet$ | $\bigcirc$ | - | $\bigcirc$ | - |  |
|  |  |  |  | 4 -wire (NPN) |  | $5 \mathrm{~V}, 12 \mathrm{~V}$ |  | - | H7NF | - | F79F | $\bullet$ | - | $\bullet$ | $\bigcirc$ | - | $\bigcirc$ | IC circuit |  |
| ¢ |  |  |  | 3-wire (NPN equivalent) | - | 5 V | - | A96V | A96 | A96V | A96 | - | - | - | - | - | - | IC circuit | - |  |
|  |  |  |  |  |  | - | 200 V | - | - | A72 | A72H | - | - | $\bullet$ | - | - | - |  |  |  |
|  |  | Grommet |  |  |  |  | 100 V | A93V | A93 | A93V | A93 | - | - | $\bullet$ | - | - | - |  |  |  |
|  |  |  | No | 2-wire |  | 12 V | 100 V or less | A90V | A90 | A90V | A90 | - | - | $\bullet$ | - | - | - | IC circuit | Relay, |  |
|  |  |  | Yes | 2-wire | 24 V | 12 V | - | - | C73C | A73C | - | $\bullet$ | - | $\bigcirc$ | $\bigcirc$ | $\bullet$ | - | - | PLC |  |
|  |  | Connector | No |  |  |  | 24 V or less | - | C80C | A80C | - | - | - | $\bigcirc$ | - | - | - | IC circuit |  |  |
|  | Diagnosicicindicaion (2.alovi indicition) | Grommet | Yes |  |  | - | - | - | - | A79W | - | $\bullet$ | - | $\bullet$ | - | - | - | - |  |  |

\footnotetext{
** Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.
Please consult with SMC regarding water resistant types with the above model numbers.

* Lead wire length symbols: $0.5 \mathrm{~m} . . . . . . . . . . . . . . . .-~(E x a m p l e) ~ M 9 N W ~$


[^0]* For details about auto switches with pre-wired connector, refer to the Auto Switch Guide.
* Solid state auto switches marked with " $O$ " are produced upon receipt of order.
* The D-A9ㅁ/M9



## Mounting Brackets／Part No．

| Mounting <br> bracket | Bore size［mm］ |  |
| :--- | :---: | :---: |
|  | $\mathbf{1 0}$ | $\mathbf{1 6}$ |
| Foot | CJ－L010C | CJ－L016C |
| Flange | CJ－F010C | CJ－F016C |
| T－bracket＊ | CJ－T010C | CJ－T016C |

＊A T－bracket is used with double clevis（D）．

## $\triangle$ Precautions

гーーーーーーーーーーーーーーーーーッ I Be sure to read before handling．Refer I I to back cover for Safety Instructions．I For Actuator and Auto Switch Precau－ tions，refer to＂Handling Precautions I for SMC Products＂and the Operation I I Manual on SMC website，http：／／www．I
I smcworld．com

## Mounting

## $\triangle$ Caution

1．During installation，secure the rod cover and tighten by applying an appropriate tightening force to the retaining nut or to the rod cover body． If the head cover is secured or the head cover is tightened，the cover could rotate，leading to the deviation．
2．Tighten the retaining screws to an appropriate tightening torque within the range given below． Apply a Loctite ${ }^{\circledR}$（no． 242 Blue）for mounting thread．

| Bore size <br> $[\mathrm{mm}]$ | Proper tightening torque for mounting thread（N．m） <br> （Tightening torque for mounting nut） |
| :---: | :---: |
| $\mathbf{1 0}$ | 3.0 to 3.2 |
| $\mathbf{1 6}$ | 5.4 to 5.9 |

3．To remove and install the retaining ring for the knuckle pin or the clevis pin，use an appropriate pair of pliers（tool for installing a type C retaining ring）．
Especially with $\varnothing 10$ ，use ultra thin pliers．
4．In the case of auto switch rail mounting type，do not remove the rail that is mounted．Because re－ taining screws extend into the cylinder，this could lead to an air leak．

Specifications


## Minimum Operating Pressure



## Standard Strokes

| Bore size $[\mathrm{mm}]$ | Standard stroke $[\mathrm{mm}]$ |
| :---: | :---: |
| $\mathbf{1 0}$ | $15,30,45,60,75,100,125,150$ |
| $\mathbf{1 6}$ | $15,30,45,60,75,100,125,150,175,200$ |

＊Manufacture of intermediate strokes at 1 mm intervals is possible．（Spacers are not used．）

Mounting and Accessories／For details，refer to page 7.

| －．．．Mounted on the product．$\bigcirc \ldots$ ．．．Please order these separately |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Mounting |  | Basic | Foot | Flange | Double＊ clevis |
|  | Mounting nut | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － |
|  | Rod end nut | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ |
|  | Clevis pin | － | － | － | $\bigcirc$ |
| $\stackrel{\text { 능 }}{ }$ | Single knuckle joint | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | Double knuckle joint＊ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | Rod end cap（Flat／Round type） | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | T－bracket | － | － | － | $\bigcirc$ |

＊A pin and retaining rings are included with double clevis and／or double knuckle joint．

## Weights

| Bore size［mm］ |  | 10 | 16 |
| :---: | :---: | :---: | :---: |
| Basic weight （When the stroke is zero） | Basic | 22 | 46 |
|  | Axial piping | 22 | 46 |
|  | Double clevis（including clevis pin） | 24 | 54 |
|  | Head－side bossed | 23 | 48 |
| Additional weight per 15 mm of stroke |  | 4 | 7 |
| Mounting bracket weight | Single foot | 8 | 25 |
|  | Double foot | 16 | 50 |
|  | Rod flange | 5 | 13 |
|  | Head flange | 5 | 13 |
| Accessories | Single knuckle joint | 17 | 23 |
|  | Double knuckle joint（including knuckle pin） | 25 | 21 |
|  | Rod end cap（Flat type） | 1 | 2 |
|  | Rod end cap（Round type） | 1 | 2 |
|  | T－bracket | 32 | 50 |

＊Mounting nut and rod end nut
are included in the basic weight．
Note）Mounting nut is not included in the basic weight for the double clevis．

Calculation：Example）CJ2YL10－45Z
－Basic weight．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 22 （ $\varnothing$ 10）
－Additional weight．．．．．．．．．．．．．．．．．．．．．．．．．．．4／15 stroke
－Cylinder stroke．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 45 stroke
－Mounting bracket weight．．．．．．．．．．．．．．． 8 （Axial foot） $22+4 / 15 \times 45+8=42 \mathrm{~g}$

## Dimensions

## Basic (B)

CJ2YB Bore size-Stroke Head cover port location Z


Section Y detail


Head cover port location
Axial location (R)
$\hbar$ Refer to page 7 for details of the mounting nut.

* The overall cylinder length does not change.

| Bore size | A | B | C | D | F | GA | GB | H | MM | NA | NB | NDh8 | NN | S | Z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 15 | 12 | 14 | 4 | 8 | 8 | 5 | 28 | M $4 \times 0.7$ | 12.5 | 9.5 | $8_{-0.022}^{0}$ | M8 x 1.0 | 46 | 74 |
| 16 | 15 | 18.3 | 20 | 5 | 8 | 8 | 5 | 28 | M5 x 0.8 | 12.5 | 9.5 | $10_{-0.022}^{0}$ | M10 $\times 1.0$ | 47 | 75 |

## Single foot (L)

CJ2YL Bore size - Stroke Head cover port location Z


Rod end nut



Head cover port location
Axial location (R)

* The overall cylinder length does not change.
$\approx$ Refer to page 7 for details of the mounting nut.

| Bore size | A | B | C | D | F | GA | GB | H | LB | LC | LH | LT | LX | LY | LZ | MM | NA | NB | NN | S | X | Y | Z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 15 | 12 | 14 | 4 | 8 | 8 | 5 | 28 | 15 | 4.5 | 9 | 1.6 | 24 | 16.5 | 32 | M4 $\times 0.7$ | 12.5 | 9.5 | M8 $\times 1.0$ | 46 | 5 | 7 | 74 |
| 16 | 15 | 18.3 | 20 | 5 | 8 | 8 | 5 | 28 | 23 | 5.5 | 14 | 2.3 | 33 | 25 | 42 | M5 x 0.8 | 12.5 | 9.5 | M10 $\times 1.0$ | 47 | 6 | 9 | 75 |

## Series CJ2Y

Dimensions

## Double foot [m]

CJ2YM Bore size - Stroke Z


Refer to page 7 for details of the mounting nut.

| Bore size | A | D | F | GA | GB | H | LB | LC | LH | LS | LT | LX | LY | LZ | MM | NA | NB | NN | S | X | Y | Z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 15 | 4 | 8 | 8 | 5 | 28 | 15 | 4.5 | 9 | 60 | 1.6 | 24 | 16.5 | 32 | M $4 \times 0.7$ | 12.5 | 9.5 | M8 $\times 1.0$ | 46 | 5 | 7 | 86 |
| 16 | 15 | 5 | 8 | 8 | 5 | 28 | 23 | 5.5 | 14 | 65 | 2.3 | 33 | 25 | 42 | M5 x 0.8 | 12.5 | 9.5 | M10 $\times 1.0$ | 47 | 6 | 9 | 90 |

## Rod flange (F)

## CJ2YF Bore size - Stroke Head cover port location Z



Head cover port location Axial location (R)

* The overall cylinder length does not change.
$\underset{\sim}{ }$ Refer to page 7 for details of the mounting nut.

| Bore size | A | B | C | D | F | FB | FC | FT | FX | FY | FZ | GA | GB | H | MM | NA | NB | NN | S | Z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 15 | 12 | 14 | 4 | 8 | 13 | 4.5 | 1.6 | 24 | 14 | 32 | 8 | 5 | 28 | M4 x 0.7 | 12.5 | 9.5 | M8 x 1.0 | 46 | 74 |
| 16 | 15 | 18.3 | 20 | 5 | 8 | 19 | 5.5 | 2.3 | 33 | 20 | 42 | 8 | 5 | 28 | M5 x 0.8 | 12.5 | 9.5 | M10 $\times 1.0$ | 47 | 75 |

## Dimensions

## Head flange [g]

CJ2YG Bore size - Stroke Z


Refer to page 7 for details of the mounting nut.

| Bore size | A | B | C | D | F | FB | FC | FT | FX | FY | FZ | GA | GB | H | MM | NA | NB | NN | S | Z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 15 | 12 | 14 | 4 | 8 | 13 | 4.5 | 1.6 | 24 | 14 | 32 | 8 | 5 | 28 | M4 x 0.7 | 12.5 | 9.5 | M8 x 1.0 | 46 | 82 |
| 16 | 15 | 18.3 | 20 | 5 | 8 | 19 | 5.5 | 2.3 | 33 | 20 | 42 | 8 | 5 | 28 | M5 x 0.8 | 12.5 | 9.5 | M10 $\times 1.0$ | 47 | 83 |

## Double clevis (D)

## CJ2YD Bore size-Stroke Z



* A clevis pin and retaining rings are included.

| Bore size | A | B | C | CD (cd) | CX | CZ | D | GA | GB | H | MM | NA | NB | R | S | U | Z | ZZ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 15 | 12 | 14 | 3.3 | 3.2 | 12 | 4 | 8 | 18 | 28 | M $4 \times 0.7$ | 12.5 | 22.5 | 5 | 46 | 8 | 82 | 87 |
| 16 | 15 | 18.3 | 20 | 5 | 6.5 | 18.3 | 5 | 8 | 23 | 28 | M5 x 0.8 | 12.5 | 27.5 | 8 | 47 | 10 | 85 | 93 |

## Series CJ2Y

## Dimensions

## Double-side bossed (E)

## CJ2YE Bore size - Stroke Z



Section Y detail

Mounting nut



Section YY detail


Refer to page 7 for details of the mounting nut.

| Bore size | A | B | C | D | F | GA | GB | H | MM | NA | NB | NDh8 | NN | S | Z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 15 | 12 | 14 | 4 | 8 | 8 | 5 | 28 | M4 x 0.7 | 12.5 | 9.5 | $8_{-0.022}^{0}$ | M8 x 1.0 | 46 | 82 |
| 16 | 15 | 18.3 | 20 | 5 | 8 | 8 | 5 | 28 | M5 x 0.8 | 12.5 | 9.5 | $10_{-0.022}^{0}$ | M10 $\times 1.0$ | 47 | 83 |

Dimensions of Accessories

## Single Knuckle Joint



| Material: Rolled steel |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Part no. | Appicable bore size | $A_{1}$ | $\mathrm{L}_{1}$ | MM | ND ${ }_{\text {H10 }}$ | NX | R1 | $\mathrm{U}_{1}$ |
| I-J010C | 10 | 8 | 21 | M4 $\times 0.7$ | $3.3{ }^{+0.048}$ | 3.1 | 8 | 9 |
| I-J016C | 16 | 8 | 25 | M5 0.8 | $5^{+0.048}$ | 6.4 | 12 | 14 |

Double Knuckle Joint


| Material: Rolled steel |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Part no. | Applicable bore size | A 1 | L | $\mathrm{L}_{1}$ | MM |
| Y-J010C | 10 | 8 | 15.2 | 21 | M4 x 0.7 |
| Y-J016C | 16 | 11 | 16.6 | 21 | M5 $\times 0.8$ |
| Part no. | ND ${ }_{\text {d9 }}$ | ND ${ }_{\text {H10 }}$ | NX | R1 | $\mathrm{U}_{1}$ |
| Y-J010C | 3.3-0.060 | $3.3{ }^{+0.048}$ | 3.2 | 8 | 10 |
| Y-J016C | $5_{-0.060}^{-0.030}$ | $5_{0}^{+0.048}$ | 6.5 | 12 | 12 |

* A knuckle pin and retaining rings are included.

Clevis Pin


* Retaining rings are included with a clevis pin.


## Mounting Nut



Material: Carbon steel

## Knuckle Pin



* For size Ø 10, a clevis pin is diverted.
* Retaining rings are included with a knuckle pin.


## Rod End Nut



| Material: Carbon steel |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Part no. | Applicable <br> bore size | $\mathbf{B}_{2}$ | $\mathbf{C}_{2}$ | $\mathbf{d}$ | $\mathbf{H}_{2}$ |
| NTJ-010C | $\mathbf{1 0}$ | $\mathbf{7}$ | 8.1 | $\mathrm{M} 4 \times 0.7$ | 3.2 |
| NTJ-015C | $\mathbf{1 6}$ | 8 | 9.2 | $\mathrm{M} 5 \times 0.8$ | 4 |

## T-bracket



| Part no. | Applicable <br> bore size | TC | TD | H10 | TH | TK | TN | TT | TU | TV | TW | TX | TY |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TZ |  |  |  |  |  |  |  |  |  |  |  |  |  |

* A T-bracket includes a T-bracket base, single knuckle joint, hexagon socket head bolt and spring washer.
*For dimensions of $(U)$ and ( $S+$ Stroke), refer to the double clevis drawing on page 5.

Rod End Cap

Flat type/CJ-CF $\square \square \square$
Round type/CJ-CR $\square \square \square$


Material: Polyacetal


Series CJ2Y

## Auto Switch Mounting

Auto Switch Proper Mounting Position (Detection at stroke end) and Its Mounting Height

Solid state auto switch
<Band mounting>
D-M9 $\square$
D-M9 $\square$ W
D-M9 $\square$ A

( ): Dimension of the D-M9■A $A$ and $B$ are the dimensions from the end of the head cover/rod cover to the end of the auto switch.

D-M9■V
D-M9 $\square$ MV
D-M9 $\square$ AV

( ): Dimension of the D-M9■AV
$A$ and $B$ are the dimensions from the end of the head cover/rod cover to the end of the auto switch.

D-H7 $\square$
D-H7■W
D-H7BA
D-H7NF
D-H7C


## Reed auto switch

<Band mounting>
D-A9 $\square$

( ): Dimension of the D-A96 $A$ and $B$ are the dimensions from the end of the head cover/rod cover to the end of the auto switch.

D-A9■V

$A$ and $B$ are the dimensions from the end of the head cover/rod cover to the end of the auto switch.

## D-C7■/C80 <br> D-C73C $\square / C 80 C$




## Series CJ2Y

Auto Switch Proper Mounting Position (Detection at stroke end) and Its Mounting Height
Auto Switch Proper Mounting Position


* The values in ( ) are measured from the end of the auto switch mounting bracket.

|  | Rail mounting |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | $\begin{aligned} & \text { D-A7 } \\ & \text { D-A7 } \\ & \text { D-F7 } \\ & \text { D-J7 } \\ & \text { D-F7 } \end{aligned}$ |  |  |  |  |  |
|  | A | B | A | B | A | B | A | B | A | B | A | B |
| 10 | 4.5 | 4.5 | 0.5 | 0.5 | 3 | 3 | 3.5 | 3.5 | 8.5 | 8.5 | 0.5 | 0.5 |
| 16 | 5 | 5 | 1 | 1 | 3.5 | 3.5 | 4 | 4 | 9 | 9 | 1 | 1 |

* Adjust the auto switch after confirming the operating condition in the actual setting.

Auto Switch Mounting Height

|  | Band mounting |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \square \mathbf{W} \\ & \text { D-M9 } \square \mathbf{A} \\ & \text { D-A9 } \square \end{aligned}$ | $\begin{aligned} & \text { D-M9 } \square V \\ & \text { D-M9 } \square \mathbf{W V} \\ & \text { D-M9 } \square \text { AV } \\ & \text { D-A9 } \square V \end{aligned}$ | $\begin{aligned} & \text { D-C7 } \square / C 80 \\ & \text { D-H7 } \square / H 7 \square W \\ & \text { D-H7NF } \\ & \text { D-H7BA } \end{aligned}$ | $\begin{aligned} & \text { D-C73C } \\ & \text { D-C80C } \end{aligned}$ | D-H7C | $\begin{aligned} & \text { D-A7 } \square \\ & \text { D-A80 } \end{aligned}$ |
|  | Hs | Hs | Hs | Hs | Hs | Hs |
| 10 | 17 | 18 | 17 | 19.5 | 20 | 16.5 |
| 16 | 20.5 | 21 | 20.5 | 23 | 23.5 | 19.5 |



## Minimum Stroke for Auto Switch Mounting

| Auto switch mounting | Auto switch model | Number of auto switches |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | With 1 pc. | With 2 pcs. |  | With n pcs. (n: Number of auto switches) |  |
|  |  |  | Different surfaces | Same surface | Different surfaces | Same surface |
| Band mounting | $\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \quad \text { W } \\ & \text { D-M9 } \square \mathbf{A} \\ & \text { D-A9 } \end{aligned}$ | 10 | $15^{\text {Note 1) }}$ | 45 Note 1) | $\begin{gathered} 15+35 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note } 3)} \end{gathered}$ | $\begin{gathered} 45+15(n-2) \\ (\mathrm{n}=2,3,4,5 \cdots) \end{gathered}$ |
|  | D-M9 $\square$ V | 5 | $15^{\text {Note 1) }}$ | 35 | $\begin{gathered} 15+35 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note } 3)} \end{gathered}$ | $\begin{gathered} 35+25(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$ |
|  | $\begin{aligned} & \text { D-M9 } \square \text { WV } \\ & \text { D-M9 } \square \text { AV } \end{aligned}$ | 10 | $15^{\text {Note 1) }}$ | 35 | $\begin{gathered} 15+35 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note } 3)} \end{gathered}$ | $\begin{gathered} 35+25(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$ |
|  | D-A9 $\square$ V | 5 | 10 | 35 | $\begin{gathered} 10+35 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note } 3)} \end{gathered}$ | $\begin{gathered} 35+25(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$ |
|  | $\begin{aligned} & \mathrm{D}-\mathrm{C} 7 \square \\ & \mathrm{D}-\mathrm{C} 80 \end{aligned}$ | 10 | 15 | 50 | $\begin{gathered} 15+40 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note } 3)} \end{gathered}$ | $\begin{gathered} 50+20(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$ |
|  | $\begin{aligned} & \text { D-H7 } \square / H 7 \square W \\ & \text { D-H7BA } \\ & \text { D-H7NF } \end{aligned}$ | 10 | 15 | 60 | $\begin{gathered} 15+45 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note } 3)} \end{gathered}$ | $\begin{gathered} 60+22.5(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$ |
|  | $\begin{aligned} & \text { D-C73C } \\ & \text { D-C80C } \\ & \text { D-H7C } \end{aligned}$ | 10 | 15 | 65 | $\begin{gathered} 15+50 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note } 3)} \end{gathered}$ | $\begin{gathered} 50+27.5(\mathrm{n}-2) \\ (\mathrm{n}=2,3,4,5 \cdots) \end{gathered}$ |
| Rail mounting | D-M9 $\square$ V | 5 | - | 5 | - | $\begin{gathered} 10+10(n-2) \\ \left.(n=4,6 \cdots)^{\text {Note }} 4\right) \end{gathered}$ |
|  | D-A9 $\square$ V | 5 | - | 10 | - | $\begin{gathered} 10+15(n-2) \\ (n=4,6 \cdots) \text { Note } 4) \\ \hline \end{gathered}$ |
|  | $\begin{aligned} & \text { D-M9 } \square \\ & \text { D-A9 } \end{aligned}$ | 10 | - | 10 | - | $\begin{gathered} 15+15(n-2) \\ (n=4,6 \cdots) \text { Note } 4) \end{gathered}$ |
|  | $\begin{aligned} & \text { D-M9 } \square \text { WV } \\ & \text { D-M9 } \square \text { AV } \end{aligned}$ | 10 | - | 15 | - | $\begin{gathered} 15+15(n-2) \\ \left.(n=4,6 \cdots)^{\text {Note }} 4\right) \\ \hline \end{gathered}$ |
|  | D-M9 $\square$ W | 15 | - | 15 | - | $\begin{gathered} 20+15(n-2) \\ (n=4,6 \cdots) \text { Note } 4) \end{gathered}$ |
|  | D-M9 $\square$ A | 15 | - | 20 | - | $\begin{gathered} 20+15(n-2) \\ \left.(n=4,6 \cdots)^{\text {Note }} 4\right) \\ \hline \end{gathered}$ |
|  | $\begin{aligned} & \text { D-A7■/A80 } \\ & \text { D-A7■H/A80H } \\ & \text { D-A73C/A80C } \end{aligned}$ | 5 | - | 10 | - | $\begin{gathered} 15+10(n-2) \\ \left.(n=4,6 \cdots)^{\text {Note }} 4\right) \end{gathered}$ |
|  | $\begin{aligned} & \text { D-A7■H } \\ & \text { D-A80H } \end{aligned}$ | 5 | - | 10 | - | $\begin{gathered} 15+15(n-2) \\ (\mathrm{n}=4,6 \cdots) \text { Note } 4) \end{gathered}$ |
|  | D-A79W | 10 | - | 15 | - | $\begin{gathered} 10+15(n-2) \\ \left.(n=4,6 \cdots)^{\text {Note }} 4\right) \\ \hline \end{gathered}$ |
|  | $\begin{aligned} & \text { D-F7口 } \\ & \text { D-J79 } \end{aligned}$ | 5 | - | 5 | - | $\begin{gathered} 15+15(n-2) \\ (n=4,6 \cdots) \text { Note } 4) \\ \hline \end{gathered}$ |
|  | $\begin{aligned} & \hline \text { D-F7 } \square \text { V } \\ & \text { D-J79C } \end{aligned}$ | 5 | - | 5 | - | $\begin{gathered} 10+10(n-2) \\ \left.(n=4,6 \cdots)^{\text {Note }} 4\right) \\ \hline \end{gathered}$ |
|  | $\begin{aligned} & \text { D-F7 } \square W / J 79 W \\ & \text { D-F7BA/F79F/F7NT } \end{aligned}$ | 10 | - | 15 | - | $\begin{gathered} 15+20(n-2) \\ (n=4,6 \cdots) \text { Note } 4) \\ \hline \end{gathered}$ |
|  | $\begin{aligned} & \text { D-F7■WV } \\ & \text { D-F7BAV } \end{aligned}$ | 10 | - | 15 | - | $\begin{gathered} 10+15(n-2) \\ (n=4,6 \cdots)^{\text {Note } 4)} \\ \hline \end{gathered}$ |

Note 3) When " $n$ " is an odd number, an even number that is one larger than this odd number is used for the calculation. Note 4) When " $n$ " is an odd number, an even number that is one larger than this odd number is used for the calculation. However, the minimum even number is 4 . So, 4 is used for the calculation when " $n$ " is 1 to 3 .
Note 1) Auto switch mounting

| Auto switch model | With 2 auto switches |  |
| :---: | :---: | :---: |
|  | Different surfaces Note 1) | Same surface ${ }^{\text {Note 1) }}$ |
|  | The proper auto switch mounting position is 5.5 mm inward from the switch holder edge. The above A and B indicate values for band mounting in the table of page 10. | The auto switch is mounted by slightly displacing it in a direction (cylinder tube circumferential exterior) so that the auto switch and lead wire do not interfere with each other. |
| D-M9 $\square / \mathrm{M} / 9 \square$ W/M9 $\square$ A | Less than 20 stroke ${ }^{\text {Note 2) }}$ | Less than 55 stroke ${ }^{\text {Note 2) }}$ |
| D-A90/A93 | - | Less than 50 stroke ${ }^{\text {Note 2) }}$ |

Note 2) Minimum stroke for auto switch mounting in styles other than those mentioned in Note 1.

## Series CJ2Y

## Operating Range

| Auto switch model |  | Bore size |  |
| :---: | :---: | :---: | :---: |
|  |  | 10 | 16 |
|  | $\begin{aligned} & \text { D-M9 } \square / M 9 \square V \\ & \text { D-M9 } \square \text { W/M9 } \square \mathbf{W V} \\ & \text { D-M9 } \square \text { A/M9 } \square \mathbf{A V} \end{aligned}$ | 2.5 | 3 |
|  | D-A9 $\square$ | 6 | 7 |
|  | D-C7 $\square / C 80 / C 73 C / C 80 C$ | 7 | 7 |
|  | $\begin{aligned} & \text { D-H7 } \square / H 7 \square W \\ & \text { D-H7BA/H7NF } \end{aligned}$ | 4 | 4 |
|  | D-H7C | 8 | 9 |
|  | D-M9 $\square /$ M9 $\square$ V <br> D-M9 $\square$ W/M9 $\square$ WV <br> D-M9 $\square$ A/M9 $\square$ AV | 3 | 3.5 |
|  | D-A9 $\square / 49 \square \mathrm{~V}$ | 6 | 6.5 |
|  | $\begin{aligned} & \text { D-A7 } \square / \text { A80/A7H/A80H } \\ & \text { D-A73C/A80C } \end{aligned}$ | 8 | 9 |
|  | D-A79W | 11 | 13 |
|  | D-F7■/J79/F7■W/J79W D-F7 $\square$ V/F7 $\square W V / F 79 F$ D-J79C/F7BA/F7BAV D-F7NT | 5 | 5 |

* Values which include hysteresis are for guideline purposes only, they are not a guarantee (assuming approximately $\pm 30 \%$ dispersion) and may change substantially depending on the ambient environment.

Auto Switch Mounting Brackets/Part No.

| Auto switch mounting | Auto switch model | Bore size [mm] |  |
| :---: | :---: | :---: | :---: |
|  |  | 10 | 16 |
| Band mounting | $\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \square \mathbf{V} \\ & \text { D-M9 } \square \mathbf{W} \\ & \text { D-M9 } \square \mathbf{W V} \\ & \text { D-A9 } \square \\ & \text { D-A9 } \square V \end{aligned}$ | $\begin{gathered} \text { BJ6-010 } \\ (\text { A set of } a, b, c, d) \end{gathered}$ | $\begin{gathered} \text { BJ6-016 } \\ (\text { A set of } a, b, c, d) \end{gathered}$ |
|  | $\begin{array}{ll} \text { D-M9 } \square \mathbf{A} & \text { Note 2) } \\ \text { D-M9 } \square \mathbf{A V} & \text { Note 2) } \end{array}$ | $\begin{gathered} \text { BJ6-010S } \\ (\mathrm{A} \text { set of } \mathrm{a}, \mathrm{~b}, \mathrm{~d}, \mathrm{e}) \end{gathered}$ | BJ6-016S (A set of $a, b, d, e$ ) |
|  |  |  |  |
| Band mounting | $\begin{aligned} & \text { D-C7 } \square / C 80 \\ & \text { D-C73C/C80C } \\ & \text { D-H7 } \square / H 7 \square W \\ & \text { D-H7BA/H7NF } \end{aligned}$ | BJ2-010 (A set of band and screw) | $\mathrm{BJ2}-016$ (A set of band and screw) |
|  |  | $\begin{gathered} \text { BQ2-012(S) } \\ \text { (A set of a and b) } \end{gathered}$ | $\begin{gathered} \text { BQ2-012(S) } \\ \text { (A set of a and b) } \end{gathered}$ |
| Note 4) <br> Rail mounting | $\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \square \mathbf{V} \\ & \text { D-M9 } \square \mathbf{W} \\ & \text { D-M9 } \square \mathbf{W} \mathbf{V} \\ & \text { D-M9 } \square \mathbf{A} \text { Note 5) } \\ & \text { D-M9 } \square \mathbf{A V} \text { Note 5) } \\ & \text { D-A9 } \square \\ & \text { D-A9 } \square \mathbf{V} \end{aligned}$ |  | Auto switch mounting screw <br> Cylinder accessory) |

Note 1) Since the switch bracket (made from nylon) are affected in an environment where alcohol, chloroform, methylamines, hydrochloric acid or sulfuric acid is splashed over, so it cannot be used. Please contact SMC regarding other chemicals.
Note 2) Avoid the indicator LED for mounting the switch bracket. As the indicator LED is projected from the switch unit, indicator LED may be damaged if the switch bracket is fixed on the indicator LED.
Note 3) When the cylinder is shipped, the auto switch mounting bracket and the auto switch will be included.
Note 4) For the $\mathrm{D}-\mathrm{M} 9 \square \mathrm{~A}(\mathrm{~V})$, order the BQ2-012S, which uses stainless steel mounting screws.
Band Mounting Brackets Set Part No.

| Set part no. | Contents |
| :--- | :--- |
| BJ2- $\square \square \square$ | • Auto switch mounting band (a) <br> $\bullet$ Auto switch mounting screw (b) |
| BJ4-1 | • Switch bracket (White/PBT) (e) <br> $\bullet$ Switch holder (d) |
| BJ5-1 | • Switch bracket (Transparent/Nylon) (c) <br> $\bullet$ - Switch holder (d) |

## [Stainless Steel Mounting Screw]

The following stainless steel mounting screw kit is available. Use it in accordance with the operating environment. (Since the auto switch mounting bracket is not included, order it separately.) BBA4: For D-C7/C8/H7 types
Note 5) Refer to the Auto Switch Guide for details on the BBA4.
When the D-H7BA type auto switch is shipped independently, the BBA4 is attached.

## Auto Switch Mounting Series <br> CJ2Y



# Smooth Cylinders/Low Speed Cylinders Specific Product Precautions 1 

Be sure to read before handling. Refer to back cover for Safety Instructions. For Actuator and Auto Switch Precautions, refer to "Handling Precautions for SMC Products" and the Operation Manual on SMC website, http://www.smcworld.com

## Recommended Pneumatic Circuit

## . Warning

## Horizontal Operation



## Dual speed controller

Speed is controlled by meter-out circuit. Using concurrently the meter-in circuit can alleviate the stick-slip. More stable low speed operation can be achieved than meter-in circuit alone.

## Vertical Operation

I

(1) Speed is controlled by meter-out circuit. Using concurrently the meter-in circuit can alleviate the stick-slip.*
(2) Depending on the size of the load, installing a regulator with check valve at position (b) can reduce lurching during descent and operation delay during ascent.
As a guide,
when $\mathrm{W}+\mathrm{Poa}>\mathrm{PoA}$,
adjust $\mathbf{P}_{1}$ to make $\mathbf{W}+\mathbf{P}_{1} \mathbf{a}=\mathbf{P} 0 \mathbf{A}$.

II


## Meter-in speed controller

Meter-in speed controllers can reduce lurching while controlling the speed. The two adjustment needles facilitate adjustment.

II

(1) Speed is controlled by meter-out circuit. Using concurrently the meter-in circuit can alleviate the stick-slip.*
(2) Installing a regulator with check valve at position (c) can reduce lurching during descent and operation delay during ascent.
As a guide,
adjust $\mathbf{P}$ 2 to make $\mathbf{W}+\mathbf{P} \mathbf{2 A}=\mathbf{P o a}$.

Smooth Cylinders/Low Speed Cylinders Specific Product Precautions 2
Be sure to read before handling. Refer to back cover for Safety Instructions. For Actuator and Auto Switch Precautions, refer to "Handling Precautions for SMC Products" and the Operation Manual on SMC website, http://www.smcworld.com

## Design

## © Caution

1. Provide a construction that does not apply a lateral load to the cylinder.
Applying a lateral load to the cylinder may cause a malfunction. (Only for low speed cylinders)
2. Design the system to prevent vibration from being applied to the cylinder.
A malfunction may occur due to the vibration.
3. Avoid using a guide with obvious variations in operating resistance.
Operation may become unstable when using a guide that manifests variations in operating resistance, or when the external load changes.
4. Avoid a system structure in which the mounting orientation changes.
Operation may become unstable if the mounting orientation changes.
5. Avoid operation where the temperature fluctuates greatly. Also, when using at low temperatures, make sure that frost does not form inside the cylinder and on the piston rod.
Operation may become unstable.
6. Do not use the product at a high frequency.

Use it at 30 cpm or less as a guideline.
7. Adjust the speed in accordance with the operating environment.
When the operating environment changes, the speed adjustment will be off unless it is reset to reflect operation in the new environment.
8. For cylinders with long strokes, sliding resistance will increase due to the deflection of the piston rod and other factors. Take measures such as the installation of a guide. (Only for smooth cylinders)
9. Do not apply excessive lateral load to the piston rod. (Only for smooth cylinders) Note 1)
Note 1) Easy checking method
Minimum operating pressure after the cylinder is mounted to the equipment $[\mathrm{MPa}]=$ Minimum operating pressure of cylinder [MPa] + \{Load weight [kg] x Friction coefficient of guide/Sectional area of cylinder $\left.\left[\mathrm{mm}^{2}\right]\right\}$
If smooth operation is confirmed within the above value, the load on the cylinder is the resistance of the thrust only and it can be judged as having no lateral load.

## Pneumatic Circuit

## 1. Caution

1. The piping length between the speed controller and the cylinder port must be kept as short as possible. If the speed controller and the cylinder port are far apart, speed adjustment may be unstable.
2. Use a speed controller for low speed operation to easily adjust for low speed operation or a dual speed controller (Series ASD) to prevent cylinders from popping out.
(When the speed controller for low speed operation is used, the maximum speed may be limited.)
Refer to "Recommended Pneumatic Circuit" on page 14.

## Mounting

## $\triangle$ Caution

1. Do not apply a lateral load to the piston rod.

Applying a lateral load to the piston rod may cause a malfunction. (Only for low speed cylinders)
2. Do not apply excessive lateral load to the piston rod. (Only for smooth cylinders) Note 1)
Note 1) Easy checking method
Minimum operating pressure after the cylinder is mounted to the equipment $[\mathrm{MPa}]=$ Minimum operating pressure of cylinder [MPa] + \{Load weight [kg] x Friction coefficient of guide/Sectional area of cylinder [ $\mathrm{mm}^{2}$ ]\}
If smooth operation is confirmed within the above value, the load on the cylinder is the resistance of the thrust only and it can be judged as having no lateral load.

## Lubrication

## . Caution

1. Operate without lubrication from a pneumatic system lubricator.
A malfunction may occur when lubricated in this fashion.
2. Only use the grease recommended by SMC.

The low speed cylinder and the low speed cylinder with clean room specifications use different types of grease. The use of grease other than the specified type can cause a malfunction and particulate generation.

- Order using the following part numbers when only maintenance grease is needed.
Grease

| Volume | Part no. |
| ---: | :---: |
| 5 g | GR-L-005 |
| 10 g | GR-L-010 |
| 150 g | GR-L-150 |

3. Do not wipe out the grease in the sliding part of the air cylinder.
Doing so may cause a malfunction.

## Air Supply

## $\triangle$ Caution

1. Take measures to prevent pressure fluctuation.

A malfunction may occur with the fluctuation of pressure.


[^0]:    * Since there are other applicable auto switches than listed above, refer to page 13 for details.

