Instruction Manual

Electric Actuator／Slider Type

Series LEF

Motor：Step［servo 24 VDC］，Battery－less absolute［Step 24 VDC］
High performance［Step 24 VDC］
Battery－less absolute High performance［Step 24 VDC］

The intended use of this Electrical Actuator is to convert an electrical inpur signal motion．

1 Safety Instructions

These safety instructions are intended to prevent hazardous situations and／or equipment damage．These instructions indicate the level of potential hazard with the labels of＂Caution，＂＂Warning＂or＂Danger．＂ They are all important notes for safety and must be followed in additio to International Standards（ISO／IEC）I，and other safety regulations． ISO 4413：Hydraulic fluid power－General rules relating to systems． IEC 60204－1：Safety of machinery－Electrical equipment of machines． Part 1：General requirements）
SO 10218－1：Manipulating industrial robots－Safety．etc．
－Refer to the product catalogue，Operation Manual and Handling －Keep this manual in a safe place for future reference．
A Caution
Caution indicates a hazard with a low level of risk which，if hot avoided，could result in minor or moderate injury．
A Warning $\begin{aligned} & \text { Warning indicates a hazard with a medium level of risk } \\ & \text { which，if not avoided，could result in death or serious injury．}\end{aligned}$

A．Danger	Danger indicates a hazard with a high level of fisk which，if
not avoided，will result in death or serious injury．	

A Warning

－Always ensure compliance with relevant safety laws and Atlandards． compliance with applicable national regulations．

2 Specifications

Model				LeFS16		LFFS25		
Stroke［mm］${ }^{\text {a }}$	$\mathrm{ml}^{\text {max）}}$				10.500		5010800	
	Horizomt	$\begin{gathered} \text { LECP1 } \\ \text { JXCE } \square 1 \\ \hline \text { LECPA/JXC } \square_{3}^{2} \end{gathered}$		14	${ }^{15}$	${ }^{12}$	${ }^{25}$	${ }^{30}$
${ }^{\text {kgo }}$（meaz				9	10	10	20	20
				2	4	0.5	7.5	15
		Stroke range	10500	0	510360	20101100	1210750	610400
			50110600			2010900	1210540	
			60110700			2016630	1210420	610230
			70110800			201055	121033	
			${ }^{80110900}$					
			H090					
			H1090					
		Strok range	10500	1010500	51025	2010000	1210500	610250
			50110600			2010900	12 2000	610250
			60110700			2010630	1210420	610230
			70110800			2010.550	1210330	610180
			80110900					
			41970					
Max．acceleration／deceleration［m Positioning repeeatability［mm］			mms ${ }^{\text {man }}$	3000				
			Basictype					
Positioning repeeatability［mm］								
Lost moion［mm ${ }^{\text {masas）}}$			Easictyp	${ }_{\substack{0.100 \\ 0.050 \text { less } \\ \text { less }}}$				
lead［ mm ］				10 ｜ 5				
Impact／Vibration resistanc $\left[\mathrm{m} / \mathrm{s}^{2}\right]$ Actuation type						$50 / 20$		
				Bal screm（LFFSCI），Ball screw＋Bem（LLFSCDLA）				
Guide type				Linear Guide				
$\begin{aligned} & \text { Static allowable } \\ & \text { momnet }[\mathrm{Nm}]^{\text {note5) }} \end{aligned}$		Mep（Pitching） Mey（Yawing）		1010		${ }_{27}^{27}$		
			${ }^{10}$		${ }_{52}^{27}$			
Operating temperature range ${ }^{\circ} \mathrm{C}$ ］								
Operating humididy range［\％orH）				90 or less（ND condensation）				
Motor size Motor typ				${ }_{\square}^{142}$				
				Step motor（Servo 24V DC）				
Encoder								
Rated voltage［V］				$24 \mathrm{VDC} \pm 10 \%$				
Power consumption［W］${ }^{\text {note6）note8）}}$ Type ${ }^{\text {notet } 7}$				Max 51 Max 57				
				Nor－magnetizing lock				
$\stackrel{\text { Iyp }}{ }$.				20 2.9			｜ 78	
$\begin{aligned} & \text { Holding force [N] } \\ & \hline \text { Power consumption [W] } \end{aligned}$							5	

Mode		LEFB16	Ler825	LeFB3
Store（mmm man		300，500，600，700 800，900， 1000	$300,500,600,700$, $800,900,1000$, $1200,1500,1800$	300，500，600，800 $900,1000,1200$,
Workioad Hotizont	${ }_{\text {Lecol }}^{\text {Lecal }}$	1	10	19
	LECPAJXCD23	1	5	14
$\begin{array}{\|l\|} \hline \text { Speed }[\mathrm{mm} / \mathrm{s}]^{\text {note2) }} \\ \hline \text { Max.acceleration/deceleration [mm/s2] } \\ \hline \text { Positioning repeeatability [mm] } \\ \hline \end{array}$		101	8810140	48810150
			3000	
			t0．08	
Lost motion［mm］${ }^{\text {note3）}}$ Equivalent lead［mm］			0.10 or less	
		${ }^{48}$	48	
ese		${ }_{\text {col }}^{50} \mathbf{\text { Bat }}$		
A Actation the				
Guide type		Lnear Guide		
alome	Nephlom	10	27	
	Mer（foling	${ }^{20}$	52	101
		${ }^{90} 0$ or less（No condensation		
Operating humidity range［\％RH］ Motor size		$\square 28$		［56．4
－Notrs Size		${ }_{\text {Step molor（Seno 24V DC）}}$		
Encoder		Incerenenal		
Fated volage（M）		$24 \mathrm{VOC}+10 \%$		
Power consumpion［W］mememeen		Max 51	Max 60	Max 127
			Nor－magnetizing lock	
		4	19	${ }^{36}$
		2.9	5	5

Nodel				$\xrightarrow{\text { LeFS32 }}$			${ }_{\text {LeFS40 }}^{\text {L }}$		
	Horizonal			${ }^{20}$	45	50	25	${ }^{55}$	65
		Vericial		4	10	20	2	2	23
Speed$[\mathrm{mm} / \mathrm{s}]$note2）	In－Ife	Stroke range	~ 500	$24 \sim 1200$	16～800	8～400	30～ 1200	$20 \sim 850$	
			$501 \sim 600$	$24 \sim 1200$	$16 \sim 800$	8～400	30～1200		
			601～700	24～930	16～620	8～310		$20 \sim 850$	
			701～800	24～750	16～500	$8 \sim 250$	30～1140	$20 \sim 760$	10～300
			$801 \sim 900$	24～610	16～410	8 200	30～930	$20 \sim 620$	10～300
			$901 \sim 1000$	24～500	16～340	8～170	30780	20－520	
			$\frac{1001 \sim 1100}{1011 \sim 200}$		．		$\xrightarrow{30 \sim 660}$	${ }^{20 \sim 440}$	$\frac{10 \sim 220}{10 \sim 190}$
	Parallel	Strokerange	\sim	24～800	16～650	8～325	30 570	20～380	
			$501 \sim 600$	24～800	16～650	8～325	$30 \sim 750$	20～550	10～300
			601～700	24～800	16～620	8～310	$30 \sim 750$	$20 \sim 550$	$10 \sim 300$
			701～800	24～750	$16 \sim 500$	$8 \sim 250$	30 750	20 550	10～300
			$801 \sim 900$	24～610	16～410	8～200			
			901～1000 2	24～500	16～340	8～170	$30 \sim 75$		
			$\frac{100 \sim 1100}{101 \sim}$				30 $3 \sim 660$	$20 \sim 40$	10～220
			mm／si	．	．		30～570	20～380	10～190
Max．acceleration／deceleration Positioning repeeatability［mm］			Basictype	3000					
Positioning repeeatability［mm］				$\pm \pm \pm 0.02$					
Lost moion［mm］${ }^{\text {neas }}$			$\frac{\text { asic type }}{}$	${ }_{\text {a }}^{0.050 \text { or less }}$					
lead［mm］				${ }^{24}$	16			20	10
\qquad Actuation type							120		
Guide type				Linear Giude					
Static allowablemoment $[\mathrm{Nm}]^{\text {note5）}}$		Mep（Pithing）		46			110110		
		$\frac{\text { Mey } \mathrm{Crami}}{\text { Mer }}$		${ }^{46}$			${ }_{207}^{10}$		
Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］				51040					
				90 or ress（ND coondensation）					
Pperating humidily range $\%$ \％orl \midMotor size									
Motor type									
硡 Enoder				Bater－less absolute					
Raled volage［V］				$24 \mathrm{VDC} \pm 10 \%$					
Powe consumpion［W］meem mese				Max 123			Max 141		
				Nor－mameneiting lock					
						${ }^{216}$	${ }^{75}$		

Series LEFB Motor：Battery－less absolute［Step 24VDC

Model			LeFB16	LeFB25	LeFB32
Stoke［mm mas）			$\begin{aligned} & 300,500,600 \\ & 700,800,900 \end{aligned}$	$\begin{array}{\|c\|} \hline 300,500,600,700, \\ 800,900,1000 \\ 1200,1500,1800 \end{array}$	$\begin{gathered} 300,500,600,700, \\ 800,900,1000, \\ 1200,1500,1800, \end{gathered}$
	Work load（ked ${ }^{\text {newas）}}$	Horizontal	1	10	19
Speed［mm／s］${ }^{\text {note2）}}$			~ 1100	10 1400	1015
			300		
Eavivelent tead［mm］			${ }^{48}$	48	48
			Bet		
Guide type					
Static allowablemoment $[\mathrm{Nm}]^{\text {note5）}}$		Mep（Pithing）	10	27	46
		Mey（rawing）	10	27	46
		Mer（foling）	20	52	101
Poeration temperatur erange $\left.{ }^{\circ} \mathrm{C}\right]$			51040		
			90 or less（No condensation）		
	Notor size		$\square 28$	042	056．4
Motor type			Batery－l－ess absolute（Step 24VCC）		
Encode			Batery－ess absolue		
Rated volage［／］			$24 \mathrm{VDC} \pm 10 \%$		
Power consumplion［W］${ }^{\text {muesem mee }}$			Nax 51	Max 60	Max 127
			Nor－magneiting lock		
				19	${ }^{36}$
	Power consumplion［W］${ }^{\text {max）}}$		2.9	5	5

LEF\＃－TF2Y013EN－A

Series LEFS，Motor：（Continued）

2 Specifications（continued）

Motor：Battery－less absolute High performance［Step 24VDC］

Model			LeFS16		LEFS25					
		fizontal	6	15	15	${ }^{28}$	40			
		verical	3	6	3	7.5	15			
		Up to 400	10 to 800	510400	20 to 1500	12 to 900	610500			
		40110450	10 to 700	510360	20 to 1100	12 to 75	610400			
		45110500	10 to 600	5 to 300	to 1100	12 to 750	610400			
		50110600			20 to 900	1210.540	610270			
		60110700			20 to 630	12 to 42	610230			
		70110800		．	20 to 550	12 to 330	610180			
		8011 to 900								
		901 to 1000								
		1001 to 1100			－					
		1101 to 1200		．	－					
	${ }_{\text {Max }}^{\text {Maxeleration }}$	Horizontal	10000							
	deceleration	Verical	500							
		Verical								
	Positioning	Basis type								
		${ }_{\text {High precision }}^{\text {kive }}$	t0．015（Lead H： ta ．02）							
		Basict type	${ }^{0.1} 0.0$ or less							
	${ }_{\text {［mm］}}$ Ooses）	High precision								
Lead［mm］			10	5	20	12	6			
${ }_{\text {a }}$			50／20							
			Ball screw（LEFSG），Ball screw＋+ Eett（LEFSSLUR）							
Guide type			Linear guide							
		Mep（Pitching）	10		${ }_{27}^{27}$					
	alowale moment	Mey（Yawing）	${ }_{20}^{10}$							
	Wmplatimy	Merffiling）								
	－ifbramy		5 to 40							
	（eatem		90 or less （No condensation）							
	Motor type		Batter－less absolute（Step 24VDC）							
	Enoder									
	${ }_{\text {a }}$		Max． 116		${ }^{24 \mathrm{VDCC}} \pm 10 \%$					
	Tomee		Non magnetizing lock							
［	Holing force IV		20	39	47		157			
	Power consum	mpion［ $[\mathrm{W}]^{\text {meaes }}$	2.9		${ }^{5}$					
	Rated volage［V］				${ }_{24 \mathrm{VOC} \pm 10 \%}$					

Model			LEFS32			LeFs40		
Stroke（mmm meate）			50 to 1000			150101200		
	Work load	Horizonal	${ }^{40}$	50	${ }^{68}$	26	${ }^{60}$ ．	${ }^{75}$
	${ }^{\text {Kak }}$ ］	Verical	4	12	18	4.5	4.5	25
		$U_{\text {pfo } 400}$	24101300	1610000	810520	30101200	20 to 1000	10 to 500
		40110500	24.101300	1610950	810520	30101200	20 to 1000	1010500
		50110600	24101200	1610800	810400	30101200	20 to 1000	1010500
		60110700	2410930	1610620	8 \％0310	30101200	20 to 900	1010400
		70110800	2410750	1610500	810250	30101140	20.10760	1010350
		80110900	2410610	1610410	810200	3010930	20.620	1010280
		901101000	2410500	161030	810770	3010780	2010520	1010250
		10011011100				3010680	20.1040	1010220
		1101101200		．	．	3010570	2010380	1010190
	${ }_{\text {max }}^{\text {Max }}$ aceation／	Horizonal	10000					
		Verical	5000					
		Basict tye	± 0.02					
		High precsion	\pm 0.015 Lead $\mathrm{H} \pm 0.022)$					
	Lost motion	Basict ype	0.1 or less					
			${ }^{8}{ }_{50 / 20} 30$					
Actuaion type			Bal screw					
Guide type			Linear sulue					
	Staic	Mep（Piching）	${ }^{46}$			110		
		Mey（\％awig）	${ }^{46}$			110		
	${ }^{\text {NMm }}$ Iomes	Mer（Rolling	101			207		
	Onder	Nperauterange	51040					
		maliy range	90 or Iess（No condensation）					
	Motor size		＂56．4					
	Moror type		Step motorsfeno 24VDC）					
	Encoser		${ }^{\text {Inceremenal }}$					
	Faled Volage［V］							
	Pemene consumpoon（W）＂Mn		Max． 158			Max． 202		
等	Type ${ }^{\text {maxa }}$		Nor magnotizing lock					
	Hoding tore III		${ }^{7}$	${ }^{108}$	216	${ }^{75}$	${ }^{113}$	225
	Power consum	mplion［W］${ }^{\text {maease }}$	${ }^{5}$			5		
	Rated volage		${ }^{24 \mathrm{VOC}+10 \%}$					

note1）Please consult with SMC for non－standard strokes produced to special order．
note2 Speed changes according to the work lad．Check k Speed－Work Load Graph noter（Guide）＂in the cataloguene．Furthermore，it the cable length exceeds $5 m$ ，then it
will 3）Acrease by up to 10% for each 5 m ．
 With a drop tester in both axial and perpendicular direction to the lead screw
（the test was pertormed with the actuator in the initialized state） Vibration resistance：No maltunction occcurred in a test ranging between 45 to 2000 Hz ，when the actuator was tested in in both an an axial and perpendicular
direction to the lead screw．（The test was performed with the actuato in the initialized state）．
note5）Static allowa

When impact is applied or repeated load is applied，please use the actuator with sulficient satety
note6）It if imax．power
operating．This value cansumption（including the controller）when the actuator is note7）For rodels incluacing lock only．
note8）For an actuator wind power supply selection．
notes）Mar an actuator with lock，add the power consumption for the lock．
noter
（Values with＊indicate the maximum work $10 a d$ at $1000 \mathrm{~mm} / \mathrm{s}^{2}$ acceleleration and deceleration speed）．The woxkrim load varaies depending on the speed and
acceleration．Check the＂Sperd Wark Laid

Actuator weight Series LEF

＝

为

Series LEFS Motor：High performance［Step 24VDC］， $\begin{gathered}\text { Battery－less abolute High perform }\end{gathered}$

	\％osmom
－	
．ama	何
为	－
	为

Warning
For special products，which include a suffix of＂－X\＃＂，＂－D\＃＂，then please For sper to the customer drawing of that specific product

3 Installation

3．1 Installation

A Warning

－Do not install the product unless the safety instructions have been read －and understood．
－When installing，inspecting or performing maintenance on the product， be sure to turn off the power supplies．Then，lock it so it cannot be work is happening．
Keep the flatness of the mounting surface to 0.1 mm maximum per
500 mm ．Insufficient flatness of a surface can cause play in the guide and increased sliding resistance． In the case of overhang mounting（including cantilever），use a support plate or support guide to avoid deflection of the actuator body
When mounting the actuator，use all mounting holes．
If all mounting holes are not used，this will not maintain the specified
performance．e．g．the amount of displacement of the table will increase performance．e．g．the amount of displacement of the table will increase．
When mounting the actuator leave a space of 40 mm or more to allow for bending of the actuator cable．
－When mounting the actuator，use screws with adequate length and
tighten them with adequate torque． tighten them with adequate torque．
cause malfunction，whilst tiorquen higher than recommended may cause malfunction，whilst tightening with a torque lower than
recommended can cause displacement of the mounting position，or the actuator could become detached from its mounting position．

Mong
Actuator mounting

Model	$\begin{gathered} \text { Screw } \\ \text { size } \end{gathered}$	Max．tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	$\varnothing \mathrm{A}[\mathrm{mm}]$	L［mm］
LEFD16	м3	0.6	3.5	20
LEFD25	M4	1.5	4.5	24
LEFD32	M5	3.0	5.5	30
LEFD40	M6	5.2	6.6	31

Work piece Mounting

－In order to prevent the work piece fixing screws from damaging the table，use screws at least 0.5 mm shorter than the maximum thread depth．Longer screws can hit the body and cause operation failure

LEF\#-TF2Y013EN-A

3 Installation (continued)

2 Environment

Do not use in an environment where corrosive gases, chemicals, salt water or steam are present.

- Do not use in an explosive atmosphere.
- Do not expose to direct sunlight. Use a suitable protective cover.
- Do not install in a location subject to vibration or impact in excess of the product's specifications.
- Do not mount in a location exposed to radiant heat that would result in temperatures in excess of the product's specifications.
- Prevent foreign particles from entering the product.

3.3 Mounting

A Warning

- Observe the required tightening torque for screws.

Unless stated otherwise, tighten the screws to the recommended torque for mounting the product.
Do not make any alterations to the product.
Alterations made to this product may lead to a loss of durability and equipment and machinery.
Do not scratch or dent the sliding parts of the table or mounting face etc., by striking or holding them with other objectis. The components are manufactured to precise tolerances, so that even a slight deformation may cause faulty operation or seizure.
Do not use the product untilit has been verified that the equipment can be operated correctly.
After mounting or repair, connect the power supply to the product and perform appropriate functional inspections to check it is mounted correctly.

- Do not use the product until it has been verified that the equipment can be operated correctly.
perform appropriate functionat the power supply to the product and correctly.
- Allow sufficient space for maintenance and inspection.

3.4 Lubrication

A. Caution

- SMC products have been lubricated for life at manufacture, and do not - SMC products have been lubricated for life at manufacture, and do
require lubrication in service.
- If a lubricant is used in the system, refer to catalogue for details.
- If a lubricant is used in the system, refer to catalco

Applied Region	Grease Pack Number	Weight $[\mathrm{g}]$
Ball screw		
Guide	GR-S-010	10
Lust seal band	GR-S-020	20

- For standard products which include a prefix of "25A-",the
recommended grease is the low condensation grease.

Applied Region	Grease Pack Number	
Ball screw Guid Dust seal band	GR-D-010	10

3 Instailation (continued)

3.5 Wirng

A Warning

- Adjustment, mounting or wiring changes should not be carried out before disconnecting the power supply to the product.
Electric shock, malfunction and damage can result.
- Do not disassemble the cables.
- Use only specified cables.

Use only specified cables otherwise there may be risk of fire and damage.
Do not connect or disconnect the wires, cables and connectors when the power is turned on.

- Wire the connector correctly Caution
- Check the connector for polarity and do not apply any voltage to the Check the connector for polarity and do not apply any voltage
terminals other than those specified in the Operation Manual.
- Take appropriate measures against noise.

Noise in a signal line may cause malfunction. As a countermeasure separate the high voltage and low voltage cables, and shorten the
wiring lengths, etc.

- Do not route input/output wires and cables together with power or high voltage cables.
The product can malfunction due to noise interference and surge Route the wires of the product selage cables close to the signal line. cables.
- Take care that actuator movement does not catch cables
- Operate with all wires and cables secured.
- Avoid bending cables at sharp angles where they enter the product.
- Avoid twisting, folding, rotating or applying an external force to the Risk
Risk of electric shock, wire breakage, contact failure and loss of control Select "duct can result.
repeatedly (ic cables in applications where cables are moving peatedly (encoder/ motor/ lock).

Refer to the relevant operation manual for the bending life of the cable - Confirm correct insulation.

Poor insulation of wires, cables, connectors, terminals etc. can cause interference with other circuits. Also there is the possibility that excessive voltage or current may be applied to the product causing damage.
Refer to the auto switch references in "Best Pneumatics" when an auto switch is to be used
3.6 Actuator Ground connection

- The Actuator must be connected to ground to shield the actuator from electrical noise. The screw and cable with crimping ter
toothed washer should be prepared separately by the user.

Wiring of Actuator to Controller

For standard products, refer to the catalogue on the SMC website (URL: https://www.smcworld.com) for the how to order information.

5 Outline Dimensions

- For standard products, refer to the catalogue on the SMC website (URL: https://www.smcworld.com) for outline dimensions.

6 Maintenance

6.1 General Maintenance

- Not following proper mainten Caution
- Not following proper maintenance procedures could cause the product to malfunction and lead to equipment damage
- Maintenance of electromechanical and pnessed air can be dangerous. - performed only by qualified personnel. to cut off the supply pressure. Confirm that the supply and be sure discharged and the air is released to atmosphere.
- After installation and maintenance, apply operating pressure and power to the equipment and perform appropriate functional and leakage tests to make sure the equipment is installed correctly.
- If any electrical or pneumatic connections are disturbed during maintenance, ensure they are reconnected correctly and safety checks applicable national regulations.
- Do not make any modification to the product.
- Do not disassemble the product, unless required by installation or maintenance instructions
can cause an injury, damage or malfunction of the equipment and machinery, so ensure that the procedure for the task is followed.
- Always allow sufficient space around the product to complete any maintenance and inspection.

6.2 Periodical Maintenance

- Maintenance should be performed according to the table below:

	Appearance Check	Belt Check
Inspection before daily operation	\checkmark	
Inspection every six months*	\checkmark	\checkmark
Inspection every $1000 \mathrm{~km}^{*}$	\checkmark	\checkmark
Inspection every 5 million cycles*	\checkmark	\checkmark

- Following any maintenance, always perform use the product if any error occurs, as safety cannot be assured if caused by any un-intentional malfunction.

6.3 Appearance Check

- The following items should be visually monitored to ensure that the
actuator remains in good condition and there are no concerns flagged;
oose Screws,

Visual flaws / faults,
Abnormal noises or vibrations.

6 Maintenance (continued)
6.4 Belt Check

- If one of the 6 conditions below are seen, do not continue operating the actuator, contact SMC immediately.

Canvas fibre becomes 'fuzzy", rubber is removed, and the fibre gains white colour. The lines of fibre become very unclear.

Peeling off or wearing of the side of the belt. he corner of the belt becomes round and frayed, with threads

Belt is partially cut.
Belt is partially cut. Foreign matter could be caught in the teeth and cause flaws.

ertical line of belt teeth. law which is made when the belt runs on the flange. Crack on the back of the belt.

7 Limitations of Use

7.1 Limited warranty and disclaimer/compliance requirements

- Refer to Handling Precautions for SMC Products.

8 Product disposal

This product should not be disposed of as municipal waste. Check your local regulations and guidelines to dispose of this product correctly, order to reduce the impact on human health and the environment.

9 Contacts

Refer to www.smcworld.com or www.smc.eu for your local distributor

SMC Corporation

URL: hitp// www.smeworld.com (Global) hitp// www.smceu.com (Europe)

